Role of donor genotype in RT-QuIC seeding activity of chronic wasting disease prions using human and bank vole substrates

Autoři: Soyoun Hwang aff001;  Justin J. Greenlee aff001;  Eric M. Nicholson aff001
Působiště autorů: United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


Chronic wasting disease is a transmissible spongiform encephalopathy of cervids. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein (PrPC) to pathogenic conformers (PrPSc), and the pathogenic forms accumulate in the brain and other tissues. Real-time Quaking Induced Conversion (RT-QuIC) can be used for the detection of prions and for prion strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how either PrPSc from cervids of different genotypes or PrPSc from different sources of CWD influence the fibril formation of recombinant bank vole (BV) or human prion proteins using RT-QuIC. We found that reaction mixtures seeded with PrPSc from different genotypes of white-tailed deer or reindeer brains have similar conversion efficiency with both substrates. Also, we observed similar results when assays were seeded with different sources of CWD. Thus, we conclude that the genotypes of all sources of CWD used in this study do not influence the level of conversion of PrPC to PrPSc.

Klíčová slova:

Animal prion diseases – Deer – Chronic wasting disease – Mules – Prions – Recombination reactions – Reindeer – Automated fluorescent genotyping


1. Prusiner SB. Prions. Proc Natl Acad Sci USA. 1998;95(23):13363–83. doi: 10.1073/pnas.95.23.13363 9811807.

2. Collinge J. Prion diseases of humans and animals: their causes and molecular basis. Annual review of neuroscience. 2001;24:519–50. doi: 10.1146/annurev.neuro.24.1.519 11283320.

3. Caughey B, Chesebro B. Transmissible spongiform encephalopathies and prion protein interconversions. Adv Virus Res. 2001;56:277–311. doi: 10.1016/s0065-3527(01)56031-5 11450303.

4. Haley NJ, Hoover EA. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu Rev Anim Biosci. 2015;3:305–25. doi: 10.1146/annurev-animal-022114-111001 25387112.

5. Benestad SL, Mitchell G, Simmons M, Ytrehus B, Vikoren T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet Res. 2016;47(1):88. doi: 10.1186/s13567-016-0375-4 27641251.

6. Department for Environment FaRA, Agency APH, Monitoring VSPAT-ID. Update on Chronic Wasting Disease in Europe 2018. Available from:

7. National Veterinary Institute S. Map of Chronic Wasting Disease (CWD) 2019. Available from:

8. Greenlee JJ, Zhang X, Nicholson EM, Kunkle RA, Hamir AN. Prolonged incubation time in sheep with prion protein containing lysine at position 171. J Vet Diagn Invest. 2012;24(3):554–8. doi: 10.1177/1040638712440993 22529124.

9. Vrentas CE, Greenlee JJ, Tatum TL, Nicholson EM. Relationships between PrPSc stability and incubation time for United States scrapie isolates in a natural host system. PLoS One. 2012;7(8):e43060. doi: 10.1371/journal.pone.0043060 22916207.

10. Moore SJ, Smith JD, Greenlee MH, Nicholson EM, Richt JA, Greenlee JJ. Comparison of two US sheep scrapie isolates supports identification as separate strains. Veterinary pathology. 2016;53(6):1187–96. doi: 10.1177/0300985816629712 26936223.

11. Moore SJ, West Greenlee MH, Smith JD, Vrentas CE, Nicholson EM, Greenlee JJ. A Comparison of Classical and H-Type Bovine Spongiform Encephalopathy Associated with E211K Prion Protein Polymorphism in Wild-Type and EK211 Cattle Following Intracranial Inoculation. Front Vet Sci. 2016;3:78. doi: 10.3389/fvets.2016.00078 27695695.

12. Moore SJ, Vrentas CE, Hwang S, West Greenlee MH, Nicholson EM, Greenlee JJ. Pathologic and biochemical characterization of PrP(Sc) from elk with PRNP polymorphisms at codon 132 after experimental infection with the chronic wasting disease agent. BMC veterinary research. 2018;14(1):80. doi: 10.1186/s12917-018-1400-9 29523205.

13. Hamir AN, Gidlewski T, Spraker TR, Miller JM, Creekmore L, Crocheck M, et al. Preliminary observations of genetic susceptibility of elk (Cervus elaphus nelsoni) to chronic wasting disease by experimental oral inoculation. J Vet Diagn Invest. 2006;18(1):110–4. doi: 10.1177/104063870601800118 16566268.

14. Johnson C, Johnson J, Vanderloo JP, Keane D, Aiken JM, McKenzie D. Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. The Journal of general virology. 2006;87(Pt 7):2109–14. doi: 10.1099/vir.0.81615-0 16760415.

15. Schmitz M, Cramm M, Llorens F, Muller-Cramm D, Collins S, Atarashi R, et al. The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat Protoc. 2016;11(11):2233–42. doi: 10.1038/nprot.2016.120 27735933.

16. Hamir AN, Richt JA, Miller JM, Kunkle RA, Hall SM, Nicholson EM, et al. Experimental transmission of chronic wasting disease (CWD) of elk (Cervus elaphus nelsoni), white-tailed deer (Odocoileus virginianus), and mule deer (Odocoileus hemionus hemionus) to white-tailed deer by intracerebral route. Veterinary pathology. 2008;45(3):297–306. doi: 10.1354/vp.45-3-297 18487485.

17. Moore SJ, Kunkle R, Greenlee MH, Nicholson E, Richt J, Hamir A, et al. Horizontal Transmission of Chronic Wasting Disease in Reindeer. Emerg Infect Dis. 2016;22(12):2142–5. doi: 10.3201/eid2212.160635 27869594.

18. Vrentas CE, Greenlee JJ, Baron T, Caramelli M, Czub S, Nicholson EM. Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay. BMC Vet Res. 2013;9:167. doi: 10.1186/1746-6148-9-167 23945217.

19. Vrentas CE, Onstot S, Nicholson EM. A comparative analysis of rapid methods for purification and refolding of recombinant bovine prion protein. Protein Expr Purif. 2012;82(2):380–8. doi: 10.1016/j.pep.2012.02.008 22381461.

20. Orru CD, Groveman BR, Raymond LD, Hughson AG, Nonno R, Zou W, et al. Bank Vole prion protein as an apparently universal substrate for RT-QuIC-based detection and discrimination of prion strains. PLoS Pathog. 2015;11(6):e1004983. doi: 10.1371/journal.ppat.1004983 26086786.

21. Dassanayake RP, Orru CD, Hughson AG, Caughey B, Graca T, Zhuang D, et al. Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion. The Journal of general virology. 2016;97(3):803–12. doi: 10.1099/jgv.0.000367 26653410.

22. Cheng K, Sloan A, Avery KM, Coulthart M, Carpenter M, Knox JD. Exploring physical and chemical factors influencing the properties of recombinant prion protein and the real-time quaking-induced conversion (RT-QuIC) assay. PLoS One. 2014;9(1):e84812. doi: 10.1371/journal.pone.0084812 24404191.

23. Orru CD, Hughson AG, Groveman BR, Campbell KJ, Anson KJ, Manca M, et al. Factors that improve RT-QuIC detection of prion seeding activity. Viruses. 2016;8(5). doi: 10.3390/v8050140 27223300.

24. Masujin K, Orru CD, Miyazawa K, Groveman BR, Raymond LD, Hughson AG, et al. Detection of atypical H-type bovine spongiform encephalopathy and discrimination of bovine prion strains by real-time quaking-induced conversion. Journal of clinical microbiology. 2016;54(3):676–86. doi: 10.1128/JCM.02731-15 26739160.

25. Orru CD, Favole A, Corona C, Mazza M, Manca M, Groveman BR, et al. Detection and discrimination of classical and atypical L-type bovine spongiform encephalopathy by real-time quaking-induced conversion. Journal of clinical microbiology. 2015;53(4):1115–20. doi: 10.1128/JCM.02906-14 25609728.

26. Hwang S, Greenlee JJ, Nicholson EM. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy. PLoS One. 2017;12(2):e0172391. doi: 10.1371/journal.pone.0172391 28225797.

27. Orru CD, Groveman BR, Hughson AG, Zanusso G, Coulthart MB, Caughey B. Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. mBio. 2015;6(1). doi: 10.1128/mBio.02451-14 25604790.

28. Orru CD, Bongianni M, Tonoli G, Ferrari S, Hughson AG, Groveman BR, et al. A test for Creutzfeldt-Jakob disease using nasal brushings. N Engl J Med. 2014;371(6):519–29. doi: 10.1056/NEJMoa1315200 25099576.

29. Hwang S, Greenlee JJ, Vance NM, Nicholson EM. Source genotype influence on cross species transmission of transmissible spongiform encephalopathies evaluated by RT-QuIC. PLoS One. 2018;13(12):e0209106. doi: 10.1371/journal.pone.0209106 30571737.

30. Davenport KA, Henderson DM, Bian J, Telling GC, Mathiason CK, Hoover EA. Insights into Chronic Wasting Disease and Bovine Spongiform Encephalopathy Species Barriers by Use of Real-Time Conversion. Journal of virology. 2015;89(18):9524–31. doi: 10.1128/JVI.01439-15 26157118.

31. Race B, Williams K, Orru CD, Hughson AG, Lubke L, Chesebro B. Lack of Transmission of Chronic Wasting Disease to Cynomolgus Macaques. Journal of virology. 2018;92(14). doi: 10.1128/JVI.00550-18 29695429.

32. Tamguney G, Giles K, Bouzamondo-Bernstein E, Bosque PJ, Miller MW, Safar J, et al. Transmission of elk and deer prions to transgenic mice. Journal of virology. 2006;80(18):9104–14. doi: 10.1128/JVI.00098-06 16940522.

33. Barria MA, Balachandran A, Morita M, Kitamoto T, Barron R, Manson J, et al. Molecular barriers to zoonotic transmission of prions. Emerg Infect Dis. 2014;20(1):88–97. doi: 10.3201/eid2001.130858 24377702.

34. Barria MA, Telling GC, Gambetti P, Mastrianni JA, Soto C. Generation of a new form of human PrP(Sc) in vitro by interspecies transmission from cervid prions. The Journal of biological chemistry. 2011;286(9):7490–5. doi: 10.1074/jbc.M110.198465 21209079.

35. Kong Q, Huang S, Zou W, Vanegas D, Wang M, Wu D, et al. Chronic wasting disease of elk: transmissibility to humans examined by transgenic mouse models. J Neurosci. 2005;25(35):7944–9. doi: 10.1523/JNEUROSCI.2467-05.2005 16135751.

36. Kurt TD, Jiang L, Fernandez-Borges N, Bett C, Liu J, Yang T, et al. Human prion protein sequence elements impede cross-species chronic wasting disease transmission. J Clin Invest. 2015;125(6):2548. doi: 10.1172/JCI82647 25961458.

37. Sandberg MK, Al-Doujaily H, Sigurdson CJ, Glatzel M, O'Malley C, Powell C, et al. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein. The Journal of general virology. 2010;91(Pt 10):2651–7. doi: 10.1099/vir.0.024380-0 20610667.

38. Kang HE, Mo Y, Abd Rahim R, Lee HM, Ryou C. Prion Diagnosis: Application of Real-Time Quaking-Induced Conversion. Biomed Res Int. 2017;2017:5413936. doi: 10.1155/2017/5413936 28596963.

39. Atarashi R, Satoh K, Sano K, Fuse T, Yamaguchi N, Ishibashi D, et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med. 2011;17(2):175–8. doi: 10.1038/nm.2294 21278748.

40. Haley NJ, Rielinger R, Davenport KA, O'Rourke K, Mitchell G, Richt JA. Estimating chronic wasting disease susceptibility in cervids using real-time quaking-induced conversion. The Journal of general virology. 2017;98(11):2882–92. doi: 10.1099/jgv.0.000952 29058651.

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden