Morphological consequences of artificial cranial deformation: Modularity and integration

Autoři: Thomas A. Püschel aff001;  Martin Friess aff002;  Germán Manríquez aff003
Působiště autorů: Primate Models for Behavioural Evolution, Institute of Cognitive and Evolutionary Anthropology, University of Oxford, Oxford, United Kingdom aff001;  Département Homme et Environnement, Muséum National d'Histoire Naturelle, Paris, France aff002;  Instituto de Investigación en Ciencias Odontológicas, Centro de Análisis Cuantitativo en Antropología Dental, Facultad de Odontología, Universidad de Chile, Santiago, Chile aff003;  Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


The cranium is an anatomically complex structure. One source of its complexity is due to its modular organization. Cranial modules are distinct and partially independent units that interact substantially during ontogeny thus generating morphological integration. Artificial Cranial Deformation (ACD) occurs when the human skull is intentionally deformed, through the use of different deforming devices applied to the head while it is developing. Hence, ACD provides an interesting example to assess the degree to which biomechanical perturbations of the developing neurocranium impact on the degree of morphological integration in the skull as a whole. The main objective of this study was to assess how ACD affects the morphological integration of the skull. This was accomplished by comparing a sample of non-deformed crania and two sets of deformed crania (i.e. antero-posterior and oblique). Both developmental and static modularity and integration were assessed through Generalized Procrustes Analysis by considering the symmetric and asymmetric components of variation in adults, using 3D landmark coordinates as raw data. The presence of two developmental modules (i.e. viscero and neurocranium) in the skull was tested. Then, in order to understand how ACD affects morphological integration, the covariation pattern between the neuro and viscerocranium was examined in antero-posterior, oblique and non-deformed cranial categories using Partial Least-Squares. The main objective of this study was to assess how ACD affects the morphological integration of the skull. This was accomplished by comparing a sample of deformed (i.e. antero-posterior and oblique) and non-deformed crania. Hence, differences in integration patterns were compared between groups. The obtained results support the modular organization of the human skull in the two analyzed modules. The integration analyses show that the oblique ACD style differentially affects the static morphological integration of the skull by increasing the covariance between neuro and viscerocranium in a more constrained way than in antero-posterior and non-deformed skulls. In addition, the antero-posterior ACD style seems to affect the developmental integration of the skull by directing the covariation pattern in a more defined manner as compared to the other cranial categories.

Klíčová slova:

Covariance – Cranium – Deformation – Face – Functional morphology – Morphometry – principal component analysis – Skull


1. Dembo A, Imbelloni J. Deformaciones intencionales del cuerpo humano de carácter étnico. Editori Nova; 1938. 366 p.

2. Moss M. The functional matrix. In: Kraus B, Riedel R, editors. Vistas in orthodontics. Philadelphia: Lea & Febiger; 1962. p. 85–98.

3. Lieberman DE. Evolution of the human head. 1 edition. Cambridge: Harvard University Press; 2011. 728 p.

4. Klingenberg CP. Cranial integration and modularity: insights into evolution and development from morphometric data. Hystrix Ital J Mammal. 2013;24(1):43–58.

5. Depew MJ, Sharpe PT. Craniofacial development. In: Rossant, Tam PPL, editors. Mouse development: patterning, morphogenesis, and organogenesis. San Diego: Academic Press; 2002. p. 421–498.

6. Lieberman DE. Speculations about the selective basis for modern human craniofacial form. Evol Anthropol Issues News Rev. 2008 Jan;17(1):55–68.

7. Klingenberg CP. Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst. 2008;39(1):115–32.

8. Cheverud JM. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution. 1982 May 1;36(3):499–516. doi: 10.1111/j.1558-5646.1982.tb05070.x 28568050

9. Klingenberg CP. Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos Trans R Soc Lond B Biol Sci. 2014 Aug 19;369(1649):20130249. doi: 10.1098/rstb.2013.0249 25002695

10. von Cramon-Taubadel N. Multivariate morphometrics, quantitative genetics, and neutral theory: Developing a “modernsynthesis” for primate evolutionary morphology. Evol Anthropol. 2018;28:21–33.

11. Adams D, Felice R. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrice. PLOS One. 2014;9:e94335. doi: 10.1371/journal.pone.0094335 24728003

12. van der Klaauw CJ. Size and position of the functional components of the skull. Arch Néerl Zool. 1948;9:1–159.

13. Roth VL. Cranial integration in the sciuridae. Am Zool. 1996 Feb;36(1):14–23.

14. Hallgrímsson B, Willmore K, Dorval C, Cooper DML. Craniofacial variability and modularity in macaques and mice. J Exp Zoolog B Mol Dev Evol. 2004;302B(3):207–225.

15. Bastir M, Rosas A. Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol. 2005;128(1):26–34. doi: 10.1002/ajpa.20191 15778978

16. von Cramon-Taubadel N. The relative efficacy of functional and developmental cranial modules for reconstructing global human population history. Am J Phys Anthropol. 2011 Sep;146(1):83–93. doi: 10.1002/ajpa.21550 21710659

17. Klingenberg CP. Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst. 2008;39(1):115–132.

18. Cheverud JM. Morphological integration in the Saddle-Back Tamarin (Saguinus fuscicollis) Cranium. Am Nat—AMER Nat. 1995;145(1).

19. Lieberman DE, McBratney BM, Krovitz G. The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci. 2002 May 2;99(3):1134–9. doi: 10.1073/pnas.022440799 11805284

20. Bookstein FL, Gunz P, Mitterœcker P, Prossinger H, Schæfer K, Seidler H. Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. J Hum Evol. 2003 Feb;44(2):167–87. doi: 10.1016/s0047-2484(02)00201-4 12662941

21. Ackermann RR. Ontogenetic integration of the hominoid face. J Hum Evol. 2005 Feb;48(2):175–97. doi: 10.1016/j.jhevol.2004.11.001 15701530

22. Goswami A. Cranial modularity shifts during mammalian evolution. Am Nat. 2006 Aug 1;168(2):270–80. doi: 10.1086/505758 16874636

23. Goswami A, Janis C. Morphological integration in the carnivoran skull. Evolution. 2006 Jan 1;60(1):169–83. 16568641

24. Mitteroecker P, Bookstein F. The evolutionary role of modularity and integration in the Hominoid cranium. Evolution. 2008 Apr 1;62(4):943–58. doi: 10.1111/j.1558-5646.2008.00321.x 18194472

25. Püschel T. Modularidad e integración morfológica en cráneos humanos: un enfoque morfométrico geométrico. Int J Morphol. 2014 Mar;32(1):299–304.

26. Kawasaki K, Richtsmeier J. Association of the chondrocranium and dermatocranium in early skull development Percival, CJ and JT Richtsmeier (Eds.), Building Bones: Bone Development and Formation in Anthropology, Cambridge Studies in Biological and Evolutionary Anthropology. Cambridge University Press. Pp 52–78.

27. Polanski JM, Franciscus RG. Patterns of craniofacial integration in extant Homo, Pan, and Gorilla. Am J Phys Anthropol. 2006 Sep;131(1):38–49. doi: 10.1002/ajpa.20421 16552733

28. Bruner E. Comparing endocranial form and shape differences in modern humans and Neandertal: a geometric approach. PaleoAnthropology. 2008;2008:93–106.

29. Bruner E, Ripani M. A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans. Am J Phys Anthropol. 2008 Sep;137(1):30–40. doi: 10.1002/ajpa.20837 18398846

30. Singh N, Harvati K, Hublin J-J, Klingenberg CP. Morphological evolution through integration: A quantitative study of cranial integration in Homo, Pan, Gorilla and Pongo. J Hum Evol. 2012 Jan;62(1):155–64. doi: 10.1016/j.jhevol.2011.11.006 22178399

31. Esteve-Altava B, Marugán-Lobón J, Botella H, Bastir M, Rasskin-Gutman D. Grist for Riedl’s mill: A network model perspective on the integration and modularity of the human skull. J Exp Zoolog B Mol Dev Evol. 2013 Dec 1;320(8):489–500.

32. Sperber GH, Guttman GD, Sperber SM. Craniofacial Development (Book for Windows & Macintosh). PMPH-USA; 2001. 236 p.

33. Zelditch ML, Swiderski DL, Sheets HD. General linear} models. In: Geometric morphometrics for biologists. 2 edition. San Diego: Academic Press; 2012. p. 209–228.

34. Lieberman DE, Ross CF, Ravosa MJ. The primate cranial base: ontogeny, function, and integration. Am J Phys Anthropol. 2000;Suppl 31:117–169. doi: 10.1002/1096-8644(2000)43:31+<117::aid-ajpa5>;2-9 11123839

35. Profico A, Piras P, Buzi C, Di Vincenzo F, Lattarini F, Melchionna M, et al. The evolution of cranial base and face in Cercopithecoidea and Hominoidea: Modularity and morphological integration. Am J Primatol. 2017 Dec;79(12):e22721.

36. Neaux D, Sansalone G, Ledogar JA, Heins Ledogar S, Luk THY, Wroe S. Basicranium and face: Assessing the impact of morphological integration on primate evolution. J Hum Evol. 2018 May;118:43–55. doi: 10.1016/j.jhevol.2018.02.007 29606202

37. Neaux D, Wroe S, Ledogar JA, Heins Ledogar S, Sansalone G. Morphological integration affects the evolution of midline cranial base, lateral basicranium, and face across primates. Am J Phys Anthropol. 2019 Sep;170(1):37–47. doi: 10.1002/ajpa.23899 31290149

38. Carlson BM. Human embryology and developmental biology. Elsevier Health Sciences; 2013. 523 p.

39. Marroig G, Cheverud JM. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of new world monkeys. Evol Int J Org Evol. 2001 Dec;55(12):2576–2600.

40. Ackermann RR. Ontogenetic integration of the hominoid face. J Hum Evol. 2005 Feb;48(2):175–197. doi: 10.1016/j.jhevol.2004.11.001 15701530

41. Hallgrímsson B, Lieberman D, Liu W, Ford-Hutchinson A, Jirik F. Epigenetic interactions and the structure of phenotypic variation in the cranium. Evol Dev. 2007;9(1):76–91. doi: 10.1111/j.1525-142X.2006.00139.x 17227368

42. Weber J, Nauck C, Creutz U, Al-Zain F, Pusch CM. Fronto-ethmoidal encephalozele in a historical skull with artificial deformation and no signs of chronic elevated intracranial pressure. Acta Neurochir (Wien). 2008;150(10):1107–1109.

43. Lieberman DE. Evolution of the human head. 1 edition. Cambridge, Mass: Harvard University Press; 2011. 728 p.

44. Vora SR. Mouse models for the study of cranial base growth and anomalies. Orthod Craniofac Res. 2017;20:18–25. doi: 10.1111/ocr.12180 28643912

45. Richtsmeier J, DeLeon V. Morphological integration of the skull in craniofacial anomalies. Orthod Craniofac Res. 2009 Aug 1;12(3):149–58. doi: 10.1111/j.1601-6343.2009.01448.x 19627516

46. Heuzé Y, Martínez-Abadías N, Stella JM, Arnaud E, Collet C, García Fructuoso G, et al. Quantification of facial skeletal shape variation in fibroblast growth factor receptor-related craniosynostosis syndromes. Birt Defects Res A Clin Mol Teratol. 2014 Apr 1;100(4):250–9.

47. Manríquez G, González-Bergás FE, Salinas JC, Espoueys O. Deformación intencional del cráneo en poblaciones arqueológicas de Arica, Chile: análisis preliminar de morfometría geométrica con uso de radiografías craneofaciales. Chungará. 2006 Jun;38(1):13–34.

48. Dingwall EJ. Artificial Cranial Deformation: A contribution to the study of ethnic mutilations. Bale; 1931. 313 p.

49. Gerszten PC, Gerszten E. Intentional cranial deformation: a disappearing form of self-mutilation. Neurosurgery. 1995 Sep;37(3):374–381; discussion 381–382. doi: 10.1227/00006123-199509000-00002 7501099

50. Bucchi A, Püschel T, Manríquez G. Artificial cranial modification in San Pedro de Atacama and the Loa basin: a quantitative approach to its role as a marker of social identity. Rev Chil Antropol. 2016;34(2):19–30.

51. Weiss P. Osteología Cultural, Prácticas Cefálicas: 2da Parte, Tipología de las deformaciones cefálicas–Estudio cultural de los tipos cefálicos y de algunas enfermedades oseas. Lima: Universidad Nacional Mayor de San Marcos; 1961. 140 p.

52. Fitzsimmons E, Prost J, Peniston S. Infant head molding; a cultural practice. Arch Fam Med. 1998;7:88–90. doi: 10.1001/archfami.7.1.88 9443706

53. Gump W. Modern induced skull deformity in adults. Neurosurg Focus. 2010;29:e4.

54. Kohler G. Die künstlichedeformation des Schädels [PhD Thesis]. Friedrich-Alexanders-Universität Nürnberg; 1901.

55. Schijman E. Artificial cranial deformation in newborns in the pre-Columbian Andes. Childs Nerv Syst. 2005;21(11):945–950. doi: 10.1007/s00381-004-1127-8 15711831

56. Prestigiacomo CJ, Krieger M. Deformations and malformations: the history of induced and congenital skull deformity. Neurosurg Focus. 2010;29(6):1.

57. Mednikova M. The practice of cultural deformation of the head in its eurasian context. Opus Interdiscip Res Archaeol. 2006 May;206–229.

58. Torres-Rouff C, Yablonsky LT. Cranial vault modification as a cultural artifact: A comparison of the Eurasian steppes and the Andes. HOMO- J Comp Hum Biol. 2005;56(1):1–16.

59. Shvedchikova Ty. To the question of dissemination of artificial cranial deformation among the ancient population in Aral region. Bull Mosc Univ. 2009;23(Anthropology 1 /in Russian/):78–84.

60. Arensburg B, Hershkovitz I. Cranial deformation and trephination in the Middle East. Bull Mém Soc Anthropol Paris. 1988;5(14–3):139–150.

61. Özbek M. Cranial deformation in a subadult sample from Değirmentepe (Chalcolithic, Turkey). Am J Phys Anthropol. 2001;238–244. doi: 10.1002/ajpa.1078 11424075

62. Fletcher A, Pearson J, Ambers J. The manipulation of social and physical identity in the Pre-Pottery Neolithic. Camb Archaeol J. 2008;18(03):309.

63. Pap I. Data to the problem of artificial cranial deformation. Ann Hist-Nat Musei Natl Hung. 1985;77:281–289.

64. Arnold W, Fedorischeva V, Naumova E, Yabluchansky N. Craniometric measurement of artificial cranial deformations in Eastern European skulls. J Biol Clin Anthropol Stuttg. 2008;2:1–8.

65. Enchev Y, Nedelkov G, Atanassova-Timeva N, Jordanov J. Paleoneurosurgical aspects of Proto-Bulgarian artificial skull deformations. Neurosurg Focus. 2010;29(6):E3. doi: 10.3171/2010.9.FOCUS10193 21121717

66. Molnár M, János I, Szűcs L, Szathmáry L. Artificially deformed crania from the Hun-Germanic Period (5th–6th century ad) in northeastern Hungary: historical and morphological analysis. Neurosurg Focus. 2014;36(4):E1. doi: 10.3171/2014.1.FOCUS13466 24684322

67. Mayall P, Pilbrow V, Bitadze L. Migrating Huns and modified heads: Eigenshape analysis comparing intentionally modified crania from Hungary and Georgia in the migration period of Europe. PLoS ONE. 2017;12(2).

68. Gosse L-A. Essai sur les déformations artificielles du crâne. Libraire d. Paris: J.-B. Baillière; 1855. 170 p.

69. Broca P. Sur la déformation toulousaine du crâne. Bull Société Anthropol Paris. 1871;2(6):100–131.

70. Delisle F. Les deformations artificielles ud crane en France. Carte de leur distribution. Bull Memoires Soc Anthropol Paris. 1902;5(3):111–167.

71. Tritsaroli P. Artificial cranial modification on a female skeleton from the Byzantine site of Maroneia (Thrace, Greece). Int J Osteoarchaeol. 2011;21(4):464–478.

72. Morton SG. Crania Americana: or a comparatif view of the skulls of various aboriginal nations of … America. J. Dobson; 1839. 488 p.

73. Munizaga J. Intentional cranial deformation in the preColumbian populations of ecuador. Am J Phys Anthropol. 1976;45(3):687–694.

74. Perez SI. Artificial cranial deformation in South America: a geometric morphometrics approximation. J Archaeol Sci. 2007 Oct;34(10):1649–58.

75. Morton S. Crania Americana: or a comparatif view of the skulls of various aboriginal nations of America. London: Simpkin, Marshall & Co.; 1839. 488 p.

76. Soto-Heim P. Evolución de deformaciones intencionales, tocados y practicas funerarias en la prehistoria de Arica, Chile. Chungara. 1987;(19):129–213.

77. Torres‐Rouff C. Cranial vault modification and ethnicity in Middle Horizon San Pedro de Atacama, Chile. Curr Anthropol. 2002;43(1):163–171.

78. Blom D. Embodying borders: Human body modification and diversity in Tiwanaku society. J Anthropol Archaeol. 2005;24(1):1–24.

79. Torres-Rouff C. La deformación craneana en San Pedro de Atacama. Estud Atacameños. 2007;33:25–38.

80. Cocilovo J, Varela H. La distribución de la deformación artificial del cráneo en el área andina centro sur. Relac Soc Argent Antropol. 2010;35:41–68.

81. Anton SC. Intentional cranial vault deformation and induced changes of the cranial base and face. Am J Phys Anthropol. 1989 Jun;79(2):253–67. doi: 10.1002/ajpa.1330790213 2662783

82. Kohn LAP, Leigh SR, Jacobs SC, Cheverud JM. Effects of annular cranial vault modification on the cranial base and face. Am J Phys Anthropol. 1993 Feb 1;90(2):147–68. doi: 10.1002/ajpa.1330900203 8430751

83. Friess M, Baylac M. Exploring artificial cranial deformation using elliptic Fourier analysis of Procrustes aligned outlines. Am J Phys Anthropol. 2003 Sep;122(1):11–22. doi: 10.1002/ajpa.10286 12923900

84. Baylac M, Frieß M. Fourier descriptors, procrustes superimposition, and data dimensionality: an example of cranial shape analysis in modern human populations. In: Slice DE, editor. Modern morphometrics in physical anthropology. Springer US; 2005. p. 145–65. (Developments in Primatology: Progress and Prospects).

85. Martínez-Abadías N, Paschetta C, Azevedo S de, Esparza M, González-José R. Developmental and genetic constraints on neurocranial globularity: insights from analyses of deformed skulls and quantitative genetics. Evol Biol. 2009 Feb 4;36(1):37–56.

86. Mendonça de Souza SMF, Reinhard KJ, Lessa A. Cranial deformation as the cause of death for a child from the Chillon River Valley, Peru. Chungará Arica. 2009;40(1):41–54.

87. Anton SC, Jaslow CR, Swartz SM. Sutural complexity in artificially deformed human (Homo sapiens) crania. J Morphol. 1992 Dec 1;214(3):321–32. doi: 10.1002/jmor.1052140307 1474599

88. Cheverud JM, Kohn LA, Konigsberg LW, Leigh SR. Effects of fronto-occipital artificial cranial vault modification on the cranial base and face. Am J Phys Anthropol. 1992 Jul;88(3):323–45. doi: 10.1002/ajpa.1330880307 1642320

89. Ketoff S, Girinon F, Schlager S, Friess M, Schouman T, Rouch P, et al. Zygomatic bone shape in intentional cranial deformations: a model for the study of the interactions between skull growth and facial morphology. J Anat. 2016;

90. Khonsari R, Friess M, Nysjö J, Odri G, Malmberg F, Nyström I, et al. Shape and volume of craniofacial cavities in intentional skull deformations. Am J Phys Anthropol. 2013;151:110–119. doi: 10.1002/ajpa.22263 23553676

91. Sandy R, Hennocq Q, Nysjö J, Giran G, Friess M, Khonsari RH. Orbital shape in intentional skull deformations and adult sagittal craniosynostoses. J Anat. 2018;233(3):302–310.

92. Cottin M, Khonsari R, Friess M. Assessing cranial plasticity in humans: The impact of artificial deformation on masticatory and basicranial structures. Comptes Rendus Palevol. 2017;16(5–6):545–556.

93. Dembo A, Imbelloni J. Deformaciones intencionales del cuerpo humano de carácter étnico. Editori Nova; 1938. 366 p.

94. O’Higgins P. The study of morphological variation in the hominid fossil record: biology, landmarks and geometry. J Anat. 2000 Jul;197(Pt 1):103–20.

95. Wiley DF, Amenta N, Alcantara DA, Ghost D, Kil YJ, Delson E, et al. Evolutionary morphing. In: EEE Visualization, 2005 VIS 05. 2005.

96. Martin R, Saller K. Lehrbuch der Anthropologie in systematischer Darstellung. 1959. book.

97. Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011 Mar 1;11(2):353–7. doi: 10.1111/j.1755-0998.2010.02924.x 21429143

98. Adams DC, Collyer ML, Kaliontzopoulou A. Geomorph: Software for geometric morphometric analysis. R package version 3.0. 6. 2018.

99. Klingenberg CP, McIntyre GS. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution. 1998 Oct 1;52(5):1363–75. doi: 10.1111/j.1558-5646.1998.tb02018.x 28565401

100. Mardia KV, Bookstein FL, Moreton IJ. Statistical assessment of bilateral symmetry of shapes. Biometrika. 2000 Jun 1;87(2):285–300.

101. Klingenberg CP, Barluenga M, Meyer A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution. 2002 Oct 1;56(10):1909–20. doi: 10.1111/j.0014-3820.2002.tb00117.x 12449478

102. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Aust Ecolology. 2001;26:32–46.

103. Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D et al. vegan: Community Ecology Package. R Package Version 25–6 [Internet]. 2019; Available from:

104. Escoufier Y. Le traitement des variables vectorielles. Biometrics. 1973;29(4):751–60.

105. Adams DC. Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure. Methods Ecol Evol. 2016;7(5):565–72.

106. Klingenberg CP. Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypotheses. Evol Dev. 2009 Jul;11(4):405–21. doi: 10.1111/j.1525-142X.2009.00347.x 19601974

107. Rohlf FJ, Corti M. Use of two-block partial least-squares to study covariation in shape. Syst Biol. 2000 Jan 12;49(4):740–53. doi: 10.1080/106351500750049806 12116437

108. Goswami A, Polly PD. The Influence of modularity on cranial morphological disparity in carnivora and primates (Mammalia). PLoS ONE. 2010 Mar 3;5(3):e9517. doi: 10.1371/journal.pone.0009517 20209089

109. Klingenberg CP, Marugán-Lobón J. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst Biol. 2013 Jul;62(4):591–610. doi: 10.1093/sysbio/syt025 23589497

110. Klingenberg CP. Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. 2001;157(1):11–23.

111. Gosse L-A. Essai sur les déformations artificielles du crâne. J.-B. Baillière; 1855. 170 p.

112. Broca P. Sur les accidents produite par la pratique des déformations artificielles du crâne. Bull Société Anthropol Paris. 1875;10(1):199–204.

113. Topinard P. Des déformations ethniques du crâne. Rev D’Anthropologie. 1879;2:496–506.

114. Hrdlička A. Artificial deformations of the human skull, with especial reference to America. In: Actas del XVII Congreso Internacional de Americanistas. Buenos Aires; 1910. p. 147–9.

115. Aichel O. Die künstliche Schädeldeformation. Stuttgart: E. Schweizerbartische Verlagsbuchhandlung; 1932.

116. Rouse I. The classification of artifacts in archaeology. Am Antiq. 1960;25:313–23.

117. Manriquez G, Salazar D, Figueroa V, Hartz S, Terberger T. Archaeological fishhooks from the coast of Antofagasta (Atacama Desert, Chile): a geometric morphometric analysis of the Otto Aichel’s fishhooks collection. In: Interaktion ohne Grenzen Beispiele archäologischer Forschungen am Beginn des 21 Jahrhunderts. Ed. by Eriksen Berit, Angelika Abegg-Wigg, Ralf Bleile & Ulf Ickerodt. Schleswig, Deutschland: Archäologisches Landesmuseum in der Stiftung Schleswig-Holsteinische Landesmuseen Schloss Gottorf; 2017. p. 958.

118. Ferros I, Mora M, Obeso I, Jimenez P, Martinez-Insua A. The nasomaxillary complex and the cranial base in artificial cranial deformation: relationships from a geometric morphometric study. Eur J Orthod. 2014;8:1–9.

119. O’Loughlin VD. Effects of Different Kinds of Cranial Deformation on the Incidence of Wormian Bones. Am J Phys Anthropol. 2004;123(2):146–155. doi: 10.1002/ajpa.10304 14730648

120. Soto-Heim P, Quevedo S. Asymetrie de la base du crane et déformation cranienne. Biométrie Hum Anthropol. 2005;23(3–4):203–11.

121. Björk A, Björk L. Artificial deformation and cranio-facial asymmetry in ancient Peruvians. J Dent Res. 1964;(3):353–62.

122. Gunz P, Harvati K. The Neanderthal ‘chignon’: variation, integration, and homology. J Hum Evol. 2007 Mar;52(3):262–74. doi: 10.1016/j.jhevol.2006.08.010 17097133

123. Scott JH. Muscle growth and function in relation to skeletal morphology. Am J Phys Anthropol. 1957 Jun 1;15(2):197–234. doi: 10.1002/ajpa.1330150210 13470043

124. Moss M. The functional matrix. In: Kraus B, Riedel R, editors. Vistas in orthodontics. Philadelphia: Lea & Febiger; 1962. p. 85–98.

125. Frost HM. Bone “mass” and the “mechanostat”: A proposal. Anat Rec. 1987 Sep 1;219(1):1–9. doi: 10.1002/ar.1092190104 3688455

126. Pearson OM, Lieberman DE. The aging of Wolff’s “law”: Ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004 Jan 1;125(S39):63–99.

127. Ruff C, Holt B, Trinkaus E. Who’s afraid of the big bad Wolff?: “Wolff’s law” and bone functional adaptation. Am J Phys Anthropol. 2006 Apr 1;129(4):484–98. doi: 10.1002/ajpa.20371 16425178

128. DiGirolamo DJ, Kiel DP, Esser KA. Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res. 2013 Jul 1;28(7):1509–18. doi: 10.1002/jbmr.1969 23630111

129. Vidarsdottir US, O’Higgins P, Stringer C. A geometric morphometric study of regional differences in the ontogeny of the modern human facial skeleton. J Anat. 2002 Sep;201(3):211–29. doi: 10.1046/j.1469-7580.2002.00092.x 12363273

130. Noback ML, Harvati K, Spoor F. Climate-related variation of the human nasal cavity. Am J Phys Anthropol. 2011 Aug 1;145(4):599–614. doi: 10.1002/ajpa.21523 21660932

131. Nicholson E, Harvati K. Quantitative analysis of human mandibular shape using three-dimensional geometric morphometrics. Am J Phys Anthropol. 2006 Nov 1;131(3):368–83. doi: 10.1002/ajpa.20425 16617436

132. Smith HF. The role of genetic drift in shaping modern human cranial evolution: a test using microevolutionary modeling. Int J Evol Biol. 2011 Mar 3;2011:e145262.

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden