Morphological association between the muscles and bones in the craniofacial region

Autoři: Masahito Yamamoto aff001;  Hiromasa Takada aff001;  Satoshi Ishizuka aff001;  Kei Kitamura aff002;  Juhee Jeong aff004;  Masaki Sato aff002;  Nobuyuki Hinata aff006;  Shinichi Abe aff001
Působiště autorů: Department of Anatomy, Tokyo Dental College, Tokyo, Japan aff001;  Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan aff002;  Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan aff003;  Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States of America aff004;  Laboratory of Biology, Tokyo Dental College, Tokyo, Japan aff005;  Department of Urology, Kobe University Graduate School of Medicine, Hyogo, Japan aff006
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


The strains of inbred laboratory mice are isogenic and homogeneous for over 98.6% of their genomes. However, geometric morphometric studies have demonstrated clear differences among the skull shapes of various mice strains. The question now arises: why are skull shapes different among the mice strains? Epigenetic processes, such as morphological interaction between the muscles and bones, may cause differences in the skull shapes among various mice strains. To test these predictions, the objective of this study is to examine the morphological association between a specific part of the skull and its adjacent muscle. We examined C57BL6J, BALB/cA, and ICR mice on embryonic days (E) 12.5 and 16.5 as well as on postnatal days (P) 0, 10, and 90. As a result, we found morphological differences between C57BL6J and BALB/cA mice with respect to the inferior spine of the hypophyseal cartilage or basisphenoid (SP) and the tensor veli palatini muscle (TVP) during the prenatal and postnatal periods. There was a morphological correlation between the SP and the TVP in the C57BL6J, BALB/cA, and ICR mice during E15 and P0. However, there were not correlation between the TVP and the SP during P10. After discectomy, bone deformation was associated with a change in the shape of the adjacent muscle. Therefore, epigenetic modifications linked to the interaction between the muscles and bones might occur easily during the prenatal period, and inflammation seems to allow epigenetic modifications between the two to occur.

Klíčová slova:

Bone – Cartilage – Epigenetics – Mice – Muscle proteins – Neck – Skeletal muscles – Skull


1. Sakai T, Kikkawa Y, Miura I, Inoue T, Moriwaki K, Shiroishi T, et al. Origins of mouse inbred strains deduced from whole-genome scanning by polymorphic microsatellite loci. Mamm Genome. 2005;16(1): 11–19. doi: 10.1007/s00344-004-3013-9 15674729

2. Barton NH, Keightley PD. Understanding quantitative genetic variation. Nat Rev Genet. 2002;3(1): 11–21. doi: 10.1038/nrg700 11823787

3. Hallgrímsson B, Dorval CJ, Zelditch ML, German RZ. Craniofacial variability and morphological integration in mice susceptible to cleft lip and palate. J Anat. 2004;205: 501–517. doi: 10.1111/j.0021-8782.2004.00356.x 15610397

4. Kawakami M, Yamamura K. Cranial bone morphometric study among mouse strains. BMC Evol Biol. 2008;8: 73. doi: 10.1186/1471-2148-8-73 18307817

5. Brakefield PM. 2011 Evo-devo and accounting for Darwin’s endless forms. Phil Trans R Soc B. 366, 2069–2075. doi: 10.1098/rstb.2011.0007 21690125

6. Waddington CH. The genetic assimilation of the bithorax phenotype. Evolution. 1956;10: 1–13.

7. Noble D. Conrad Waddington and the origin of epigenetics. J Exp Biol. 2015. Mar;218(Pt 6):816–8. doi: 10.1242/jeb.120071 25788723

8. Weijs WA, Hillen B. Correlations between the cross-sectional area of the jaw muscles and craniofacial size and shape. Am J Phys Anthropol. 1986;70(4): 423–431. doi: 10.1002/ajpa.1330700403 3766712

9. Thompson KD, Weiss-Bilka HE, McGough EB, Ravosa MJ. Bone up: craniomandibular development and hard-tissue biomineralization in neonate mice. Zoology (Jena). 2017;124: 51–60.

10. Sella-Tunis T, Pokhojaev A, Sarig R, O'Higgins P, May H. Human mandibular shape is associated with masticatory muscle force. Sci Rep. 2018;8(1): 6042. doi: 10.1038/s41598-018-24293-3 29662127

11. Conith AJ, Lam DT, Albertson RC. Muscle-induced loading as an important source of variation in craniofacial skeletal shape. Genesis. 2019;57(1): e23263. doi: 10.1002/dvg.23263 30418689

12. Moore WJ. Masticatory function and skull growth. Proceedings of the Zoological Society of London, 1965;146(2): 123–131.

13. Spassov A, Toro-Ibacache V, Krautwald M, Brinkmeier H, Kupczik K. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently. J Anat. 2017;231(5): 736–748. doi: 10.1111/joa.12664 28762259

14. Balanta-Melo J, Toro-Ibacache V, Kupczik K, Buvinic S. Mandibular bone loss after masticatory muscles intervention with botulinum toxin: an approach from basic research to clinical findings. Toxins (Basel). 2019;11(2): 84.

15. Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138: 3247–3259. doi: 10.1242/dev.063768 21750035

16. Rot-Nikcevic I, Reddy T, Downing KJ, Belliveau AC, Hallgrímsson B, Hall BK, et al. Myf5−/−:MyoD−/− amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Dev Genes Evol. 2006;216: 1–9. doi: 10.1007/s00427-005-0024-9 16208536

17. Gomez C, David V, Peet NM, Vico L, Chenu C, Malaval L, et al. Absence of mechanical loading in utero influences bone mass and architecture but not innervation in Myod-Myf5-deficient mice. J Anat. 2007;210: 259–271. doi: 10.1111/j.1469-7580.2007.00698.x 17331176

18. Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P, et al. Developing bones are differentially affected by compromised skeletal muscle formation. Bone. 2010;46: 1275–1285. doi: 10.1016/j.bone.2009.11.026 19948261

19. Rot-Nikcevic I, Downing KJ, Hall BK, Kablar B. Development of the mouse mandibles and clavicles in the absence of skeletal myogenesis. Histol Histopathol. 2007;22: 51–60. doi: 10.14670/HH-22.51 17128411

20. Strandring S. Gray's anatomy: the anatomical basis of clinical practice. 39th ed. New York: Elsevier Churchill Livingstone; 2005.

21. Abe S, Rhee SK, Osonoi M, Nakamura T, Cho BH, Murakami G, et al. Expression of intermediate filaments at muscle insertions in human fetuses. J Anat. 2010;217: 167–173. doi: 10.1111/j.1469-7580.2010.01246.x 20500537

22. Yamamoto M, Shinomiya T, Kishi A, Yamane S, Umezawa T, Ide Y, et al. Desmin and nerve terminal expression during embryonic development of the lateral pterygoid muscle in mice. Arch Oral Biol. 2014;59: 871–879. doi: 10.1016/j.archoralbio.2014.03.011 24907516

23. Kikuchi R, Yamamoto M, Kitamura K, Shiozaki K, Kishi A, Usami A, et al. Medial pterygoid initiated the growth of the mandible through premature muscle contraction. J Hard Tissue Biol. 2014;23: 225–232.

24. Kishi A, Yamamoto M, Kikuchi A, Iwanuma O, Watanabe Y, Ide Y, et al. Gene and protein expressions of vimentin and desmin during embryonic development of the mylohyoid muscle. Anat Sci Int. 2012;87: 126–131. doi: 10.1007/s12565-012-0132-3 22476899

25. Nara M, Kitamura K, Yamamoto M, Nagakura R, Mitomo K, Matsunaga S, et al. Developmental mechanism of muscle-tendon-bone complex in the fetal soft palate. Arch Oral Biol. 2017;82: 71–78. doi: 10.1016/j.archoralbio.2017.06.001 28618344

26. Yamamoto M, Kitamura K, Kasahara M, Serikawa M, Katumura S, Yoshimoto T, et al. Histological study of the developing pterygoid process of the fetal mouse sphenoid. Anat Sci Int. 2017;92: 364–372. doi: 10.1007/s12565-016-0340-3 27015685

27. Hirouchi H, Kitamura K, Yamamoto M, Odaka K, Matsunaga S, Sakiyama K, et al. Developmental characteristics of secondary cartilage in the mandibular condyle and sphenoid bone in mice. Arch Oral Biol. 2018;89: 84–92. doi: 10.1016/j.archoralbio.2017.12.027 29494810

28. Xu L, Polur I, Lim C, Servais JM, Dobeck J, Li Y, et al. Early-onset osteoarthritis of mouse temporomandibular joint induced by partial discectomy. Osteoarthr Cartil. 2009;17: 917–922. doi: 10.1016/j.joca.2009.01.002 19230720

29. Cohen WA, Servais JM, Polur I, Li Y, Xu L. Articular cartilage degeneration in the contralateral non-surgical temporomandibular joint in mice with a unilateral partial discectomy. J Oral Pathol Med. 2014;43(2): 162–165. doi: 10.1111/jop.12113 24044578

30. McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM. Development and tissue origins of the mammalian cranial base. Dev Biol. 2008;322: 121–132. doi: 10.1016/j.ydbio.2008.07.016 18680740

31. Noden DM, Trainor PA. Relations and interactions between cranial mesoderm and neural crest populations. J Anat. 2005;207: 575–601. doi: 10.1111/j.1469-7580.2005.00473.x 16313393

32. Evans DJ, Noden DM. Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn. 2006;235: 1310–1325. doi: 10.1002/dvdy.20663 16395689

33. Olsson L, Falck P, Lopez K, Cobb J, Hanken J. Cranial neural crest cells contribute to connective tissue in cranial muscles in the anuran amphibian, Bombina orientalis. Dev Biol. 2001;237: 354–367. doi: 10.1006/dbio.2001.0377 11543620

34. Rinon A, Lazar S, Marshall H, Büchmann-Møller S, Neufeld A, Elhanany-Tamir H, et al. Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development. 2007;134: 3065–3075. doi: 10.1242/dev.002501 17652354

35. Chen JW, Galloway JL. The development of zebrafish tendon and ligament progenitors. Development. 2014;141: 2035–2045. doi: 10.1242/dev.104067 24803652

36. Carlson BM. The biology of long-term denervated skeletal muscle. Eur J Transl Myol. 2014;24(1): 3293. doi: 10.4081/ejtm.2014.3293 26913125

37. Zernicka E, Smol E, Langfort J, Górecka M. Time course of changes in lipoprotein lipase activity in rat skeletal muscles during denervation-reinnervation. J Appl Physiol. 2002;92(2): 535–540. doi: 10.1152/japplphysiol.00820.2001 11796661

38. Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, et al. BMP signaling controls muscle mass. Nat Genet. 2013;45(11): 1309–1318. doi: 10.1038/ng.2772 24076600

39. Winbanks CE, Chen JL, Qian H, Liu Y, Bernardo BC, Beyer C, et al. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J Cell Biol. 2013;203(2): 345–357. doi: 10.1083/jcb.201211134 24145169

40. Purcell P, Jheon A, Vivero MP, Rahimi H, Joo A, Klein OD. Spry1 and spry2 are essential for development of the temporomandibular joint. J Dent Res. 2012;91: 387–393. doi: 10.1177/0022034512438401 22328578

41. Glastad KM, Hunt BG, Goodisman MAD. Epigenetics in Insects: Genome Regulation and the Generation of Phenotypic Diversity. Annu Rev Entomol 2019;64: 185–203. doi: 10.1146/annurev-ento-011118-111914 30285490

42. Wang R, Li T. DNA Methylation is Correlated with Pluripotency of Stem Cells. Curr Stem Cell Res Ther 2017;12: 442–446. doi: 10.2174/1574888X11666161226145432 28025937

43. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007;447: 425–432. doi: 10.1038/nature05918 17522676

44. Brunk BP, Goldhamer DJ, Emerson CP Jr. Regulated demethylation of the myoD distal enhancer during skeletal myogenesis. Dev Biol 1996;177: 490–503. doi: 10.1006/dbio.1996.0180 8806826

45. Scarpa S, Lucarelli M, Palitti F, Carotti D, Strom R. Simultaneous myogenin expression and overall DNA hypomethylation promote in vitro myoblast differentiation. Cell Growth Differ 1996;7: 1051–1058. 8853901

46. Zhang F, Pomerantz JH, Sen G, Palermo AT, Blau HM. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proc Natl Acad Sci U S A 2007;104: 4395–4400. doi: 10.1073/pnas.0700181104 17360535

47. Moresi V, Marroncelli N, Coletti D, Adamo S. Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA. Biochim Biophys Acta 2015;1849: 309–316 doi: 10.1016/j.bbagrm.2015.01.002 25598319

48. Allas L, Boumédiene K, Baugé C. Epigenetic dynamic during endochondral ossification and articular cartilage development. Bone 2019;120: 523–532. doi: 10.1016/j.bone.2018.10.004 30296494

49. Verschueren S, Gielen E, O'Neill TW, Pye SR, Adams JE, Ward KA, et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int 2013;24: 87–98. doi: 10.1007/s00198-012-2057-z 22776861

50. Inoue M, Ono T, Kameo Y, Sasaki F, Ono T, Adachi T, et al. Forceful mastication activates osteocytes and builds a stout jawbone. Sci Rep. 2019;9(1): 4404. doi: 10.1038/s41598-019-40463-3 30890758

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden