HIV RNA measurement in dried blood spots of HIV-infected patients in Thailand using Abbott m2000 system

Autoři: Woottichai Khamduang aff001;  Ampika Kaewbundit aff003;  Amonrat Duangmano aff003;  Sayamon Hongjaisee aff004;  Virat Klinbuayaem aff005;  Guttiga Halue aff006;  Apichat Chutanunta aff007;  Wasna Sirirungsi aff001;  Gonzague Jourdain aff001;  Nicole Ngo-Giang-Huong aff001
Působiště autorů: Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiangmai, Thailand aff001;  Infectious Diseases Research Unit, Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiangmai, Thailand aff002;  Institut de Recherche pour le Développement (IRD), Chiangmai, Thailand aff003;  Research Institute for Health Sciences, Chiang Mai University, Chiangmai, Thailand aff004;  Sanpatong hospital, Chiangmai, Thailand aff005;  Phayao hospital, Phayao, Thailand aff006;  Samut Sakorn hospital, Samut Sakorn, Thailand aff007;  Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America aff008
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


World Health Organization recommends using dried blood spots (DBS) for HIV RNA viral load (VL) measurement whenever plasma processing is not convenient or feasible. DBS collected from 80 treatment-naïve HIV-infected patients presenting in three hospitals of two different regions of Thailand were shipped to a central laboratory along with corresponding plasma specimens. Viral load was measured in both DBS and plasma using the Abbott m2000 system. HIV RNA levels were strongly correlated (r = 0.94) with a mean of differences of 0.23 log10 copies/mL. Using the 1,000 copies/mL cut-off, the sensitivity of DBS was 97% (95%CI, 91–100%) and specificity was 75% (95%CI, 19–99%). DBS are useful to scale-up HIV RNA VL testing in settings with limited access to VL testing.

Klíčová slova:

Antiretroviral therapy – Blood – Blood plasma – HIV – HIV epidemiology – HIV prevention – Thailand – Viral load


1. The Joint United Nations Programme on HIV/AIDS. Fast-Track: ending the AIDS epidemic by 2030. Geneva, Switzerland: The Joint United Nations Programme on HIV/AIDS; 2014.

2. The Joint United Nations Programme on HIV/AIDS. 90-90-90 On the right track towards the global target Geneva, Switzerland: The Joint United Nations Programme on HIV/AIDS; 2016.

3. National Health Security Office. National Health Security Fund Management Manual Volume 2 Management of HIV / AIDS Service Accounts and Management of Tuberculosis Patients (in Thai). Bangkok, Thailand: National Health Security Office; 2016.

4. Smit PW, Sollis KA, Fiscus S, Ford N, Vitoria M, Essajee S, et al. Systematic review of the use of dried blood spots for monitoring HIV viral load and for early infant diagnosis. PLoS One. 2014;9(3):e86461. doi: 10.1371/journal.pone.0086461 24603442

5. Tang N, Pahalawatta V, Frank A, Bagley Z, Viana R, Lampinen J, et al. HIV-1 viral load measurement in venous blood and fingerprick blood using Abbott RealTime HIV-1 DBS assay. J Clin Virol. 2017;92:56–61. doi: 10.1016/j.jcv.2017.05.002 28531553

6. Brambilla D, Jennings C, Aldrovandi G, Bremer J, Comeau AM, Cassol SA, et al. Multicenter evaluation of use of dried blood and plasma spot specimens in quantitative assays for human immunodeficiency virus RNA: measurement, precision, and RNA stability. J Clin Microbiol. 2003;41(5):1888–93. doi: 10.1128/JCM.41.5.1888-1893.2003 12734222

7. Marconi A, Balestrieri M, Comastri G, Pulvirenti FR, Gennari W, Tagliazucchi S, et al. Evaluation of the Abbott Real-Time HIV-1 quantitative assay with dried blood spot specimens. Clin Microbiol Infect. 2009;15(1):93–7. doi: 10.1111/j.1469-0691.2008.02116.x 19220340

8. Andreotti M, Pirillo M, Guidotti G, Ceffa S, Paturzo G, Germano P, et al. Correlation between HIV-1 viral load quantification in plasma, dried blood spots, and dried plasma spots using the Roche COBAS Taqman assay. J Clin Virol. 2010;47(1):4–7. doi: 10.1016/j.jcv.2009.11.006 S1386-6532(09)00547-2 [pii]. 19962936

9. Bertagnolio S, Parkin NT, Jordan M, Brooks J, Garcia-Lerma JG. Dried blood spots for HIV-1 drug resistance and viral load testing: A review of current knowledge and WHO efforts for global HIV drug resistance surveillance. AIDS Rev. 2010;12(4):195–208. 21179184

10. Garrido C, Zahonero N, Fernandes D, Serrano D, Silva AR, Ferraria N, et al. Subtype variability, virological response and drug resistance assessed on dried blood spots collected from HIV patients on antiretroviral therapy in Angola. J Antimicrob Chemother. 2008;61(3):694–8. doi: 10.1093/jac/dkm515 [pii]. 18218644

11. Johannessen A, Garrido C, Zahonero N, Sandvik L, Naman E, Kivuyo SL, et al. Dried blood spots perform well in viral load monitoring of patients who receive antiretroviral treatment in rural Tanzania. Clin Infect Dis. 2009;49(6):976–81. doi: 10.1086/605502 19663598

12. Mbida AD, Sosso S, Flori P, Saoudin H, Lawrence P, Monny-Lobe M, et al. Measure of viral load by using the Abbott Real-Time HIV-1 assay on dried blood and plasma spot specimens collected in 2 rural dispensaries in Cameroon. J Acquir Immune Defic Syndr. 2009;52(1):9–16. doi: 10.1097/QAI.0b013e3181aeccbc 19620878

13. Rutstein SE, Kamwendo D, Lugali L, Thengolose I, Tegha G, Fiscus SA, et al. Measures of viral load using Abbott RealTime HIV-1 Assay on venous and fingerstick dried blood spots from provider-collected specimens in Malawian District Hospitals. J Clin Virol. 2014;60(4):392–8. doi: 10.1016/j.jcv.2014.05.005 24906641

14. Pannus P, Claus M, Gonzalez MM, Ford N, Fransen K. Sensitivity and specificity of dried blood spots for HIV-1 viral load quantification: A laboratory assessment of 3 commercial assays. Medicine (Baltimore). 2016;95(48):e5475. doi: 10.1097/MD.0000000000005475 27902602

15. Zeh C, Ndiege K, Inzaule S, Achieng R, Williamson J, Chih-Wei Chang J, et al. Evaluation of the performance of Abbott m2000 and Roche COBAS Ampliprep/COBAS Taqman assays for HIV-1 viral load determination using dried blood spots and dried plasma spots in Kenya. PLoS One. 2017;12(6):e0179316. doi: 10.1371/journal.pone.0179316 28622370

16. Taieb F, Tran Hong T, Ho HT, Nguyen Thanh B, Pham Phuong T, Viet Ta D, et al. First field evaluation of the optimized CE marked Abbott protocol for HIV RNA testing on dried blood spot in a routine clinical setting in Vietnam. PLoS One. 2018;13(2):e0191920. doi: 10.1371/journal.pone.0191920 29425216

17. Ngo-Giang-Huong N, Khamduang W, Leurent B, Collins I, Nantasen I, Leechanachai P, et al. Early HIV-1 diagnosis using in-house real-time PCR amplification on dried blood spots for infants in remote and resource-limited settings. J Acquir Immune Defic Syndr. 2008;49(5):465–71. doi: 10.1097/QAI.0b013e31818e2531 18989220

18. Thepbundit V, Ngo-Giang-Huong N, Salvadori N, Laolue A, Kunyanone N, Sata-Un J, et al. Feasibility of using dried blood spots for HIV viral load testing among HIV-infected individuals in Thailand using QIAGEN QIAsymphony-artus HIV-1 platform. J Med Virol. 2019;91(9):1652–9. doi: 10.1002/jmv.25506 31095748

19. Leelawiwat W, Young NL, Chaowanachan T, Ou CY, Culnane M, Vanprapa N, et al. Dried blood spots for the diagnosis and quantitation of HIV-1: stability studies and evaluation of sensitivity and specificity for the diagnosis of infant HIV-1 infection in Thailand. J Virol Methods. 2009;155(2):109–17. doi: 10.1016/j.jviromet.2008.09.022 18952125

20. Nyagupe C, Shewade HD, Ade S, Timire C, Tweya H, Vere N, et al. HIV Viral Load Estimation Using Hematocrit Corrected Dried Blood Spot Results on a BioMerieux NucliSENS((R)) Platform. Diagnostics (Basel). 2019;9(3). doi: 10.3390/diagnostics9030086 31366024

21. Garrido C, Zahonero N, Corral A, Arredondo M, Soriano V, de Mendoza C. Correlation between human immunodeficiency virus type 1 (HIV-1) RNA measurements obtained with dried blood spots and those obtained with plasma by use of Nuclisens EasyQ HIV-1 and Abbott RealTime HIV load tests. J Clin Microbiol. 2009;47(4):1031–6. doi: 10.1128/JCM.02099-08 JCM.02099-08 [pii]. 19193847

22. Vidya M, Saravanan S, Rifkin S, Solomon SS, Waldrop G, Mayer KH, et al. Dried blood spots versus plasma for the quantitation of HIV-1 RNA using a real-Time PCR, m2000rt assay. J Virol Methods. 2012;181(2):177–81. doi: 10.1016/j.jviromet.2012.02.006 22401801

23. Taieb F, Tram TH, Ho HT, Pham VA, Nguyen L, Pham BH, et al. Evaluation of Two Techniques for Viral Load Monitoring Using Dried Blood Spot in Routine Practice in Vietnam (French National Agency for AIDS and Hepatitis Research 12338). Open Forum Infect Dis. 2016;3(3):ofw142. doi: 10.1093/ofid/ofw142 27704001

24. Alvarez-Munoz MT, Zaragoza-Rodriguez S, Rojas-Montes O, Palacios-Saucedo G, Vazquez-Rosales G, Gomez-Delgado A, et al. High correlation of human immunodeficiency virus type-1 viral load measured in dried-blood spot samples and in plasma under different storage conditions. Arch Med Res. 2005;36(4):382–6. doi: 10.1016/j.arcmed.2005.03.010 15950079

25. Monleau M, Butel C, Delaporte E, Boillot F, Peeters M. Effect of storage conditions of dried plasma and blood spots on HIV-1 RNA quantification and PCR amplification for drug resistance genotyping. J Antimicrob Chemother. 2010;65(8):1562–6. doi: 10.1093/jac/dkq205 20542904

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden