OGG1 deficiency alters the intestinal microbiome and increases intestinal inflammation in a mouse model

Autoři: Holly Simon aff001;  Vladimir Vartanian aff002;  Melissa H. Wong aff003;  Yusaku Nakabeppu aff005;  Priyanka Sharma aff006;  R. Stephen Lloyd aff002;  Harini Sampath aff006
Působiště autorů: Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, United States of America aff001;  Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America aff002;  Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, United States of America aff003;  Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America aff004;  Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Fukuoka, Kyushu, Japan aff005;  Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America aff006;  New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America aff007;  Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America aff008
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227501


OGG1-deficient (Ogg1-/-) animals display increased propensity to age-induced and diet-induced metabolic diseases, including insulin resistance and fatty liver. Since the intestinal microbiome is increasingly understood to play a role in modulating host metabolic responses, we examined gut microbial composition in Ogg1-/- mice subjected to different nutritional challenges. Interestingly, Ogg1-/- mice had a markedly altered intestinal microbiome under both control-fed and hypercaloric diet conditions. Several microbial species that were increased in Ogg1-/- animals were associated with increased energy harvest, consistent with their propensity to high-fat diet induced weight gain. In addition, several pro-inflammatory microbes were increased in Ogg1-/- mice. Consistent with this observation, Ogg1-/- mice were significantly more sensitive to intestinal inflammation induced by acute exposure to dextran sulfate sodium. Taken together, these data indicate that in addition to their proclivity to obesity and metabolic disease, Ogg1-/- mice are prone to colonic inflammation. Further, these data point to alterations in the intestinal microbiome as potential mediators of the metabolic and intestinal inflammatory response in Ogg1-/- mice.

Klíčová slova:

Body weight – Colon – Diet – Gastrointestinal tract – Inflammation – Inflammatory bowel disease – Microbiome – Mouse models


1. Sampath H. Oxidative DNA damage in disease—insights gained from base excision repair glycosylase-deficient mouse models. Environmental and molecular mutagenesis. 2014;55(9):689–703. Epub 2014/07/22. doi: 10.1002/em.21886 25044514.

2. Sampath H, Lloyd RS. Roles of OGG1 in transcriptional regulation and maintenance of metabolic homeostasis. DNA repair. 2019:102667. Epub 2019/07/18. doi: 10.1016/j.dnarep.2019.102667 31311771.

3. Sharma P, Sampath H. Mitochondrial DNA Integrity: Role in Health and Disease. Cells. 2019;8(2). Epub 2019/02/01. doi: 10.3390/cells8020100 30700008.

4. van der Kemp PA, Thomas D, Barbey R, de Oliveira R, Boiteux S. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc Natl Acad Sci U S A. 1996;93(11):5197–202. Epub 1996/05/28. doi: 10.1073/pnas.93.11.5197 8643552.

5. Nash HM, Bruner SD, Scharer OD, Kawate T, Addona TA, Spooner E, et al. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol. 1996;6(8):968–80. Epub 1996/08/01. doi: 10.1016/s0960-9822(02)00641-3 8805338.

6. Karahalil B, Girard PM, Boiteux S, Dizdaroglu M. Substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae: excision of guanine lesions produced in DNA by ionizing radiation- or hydrogen peroxide/metal ion-generated free radicals. Nucleic Acids Res. 1998;26(5):1228–33. Epub 1998/04/04. doi: 10.1093/nar/26.5.1228 9469830.

7. Dherin C, Radicella JP, Dizdaroglu M, Boiteux S. Excision of oxidatively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res. 1999;27(20):4001–7. Epub 1999/09/25. doi: 10.1093/nar/27.20.4001 10497264.

8. Audebert M, Radicella JP, Dizdaroglu M. Effect of single mutations in the OGG1 gene found in human tumors on the substrate specificity of the Ogg1 protein. Nucleic Acids Res. 2000;28(14):2672–8. Epub 2000/07/25. doi: 10.1093/nar/28.14.2672 10908322.

9. Morales-Ruiz T, Birincioglu M, Jaruga P, Rodriguez H, Roldan-Arjona T, Dizdaroglu M. Arabidopsis thaliana Ogg1 protein excises 8-hydroxyguanine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine from oxidatively damaged DNA containing multiple lesions. Biochemistry. 2003;42(10):3089–95. Epub 2003/03/12. doi: 10.1021/bi027226u 12627976.

10. Chevillard S, Radicella JP, Levalois C, Lebeau J, Poupon MF, Oudard S, et al. Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours [In Process Citation]. Oncogene. 1998;16(23):3083–6. doi: 10.1038/sj.onc.1202096 9662341

11. Lu R, Nash HM, Verdine GL. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr Biol. 1997;7(6):397–407. doi: 10.1016/s0960-9822(06)00187-4 9197244

12. Okasaka T, Matsuo K, Suzuki T, Ito H, Hosono S, Kawase T, et al. hOGG1 Ser326Cys polymorphism and risk of lung cancer by histological type. J Hum Genet. 2009;54(12):739–45. doi: 10.1038/jhg.2009.108 19881468.

13. Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman LC, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett. 2008;266(1):60–72. doi: 10.1016/j.canlet.2008.02.032 18374480.

14. Sakumi K, Tominaga Y, Furuichi M, Xu P, Tsuzuki T, Sekiguchi M, et al. Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res. 2003;63(5):902–5. 12615700.

15. Cardozo-Pelaez F, Cox DP, Bolin C. Lack of the DNA repair enzyme OGG1 sensitizes dopamine neurons to manganese toxicity during development. Gene Expr. 2005;12(4–6):315–23. doi: 10.3727/000000005783992007 16358418.

16. Dezor M, Dorszewska J, Florczak J, Kempisty B, Jaroszewska-Kolecka J, Rozycka A, et al. Expression of 8-oxoguanine DNA glycosylase 1 (OGG1) and the level of p53 and TNF-alphalpha proteins in peripheral lymphocytes of patients with Alzheimer's disease. Folia Neuropathol. 2011;49(2):123–31. 21845541.

17. Dorszewska J, Kempisty B, Jaroszewska-Kolecka J, Rozycka A, Florczak J, Lianeri M, et al. Expression and polymorphisms of gene 8-oxoguanine glycosylase 1 and the level of oxidative DNA damage in peripheral blood lymphocytes of patients with Alzheimer's disease. DNA Cell Biol. 2009;28(11):579–88. doi: 10.1089/dna.2009.0926 19630534.

18. Fukae J, Mizuno Y, Hattori N. Mitochondrial dysfunction in Parkinson's disease. Mitochondrion. 2007;7(1–2):58–62. doi: 10.1016/j.mito.2006.12.002 17300997.

19. Iida T, Furuta A, Nishioka K, Nakabeppu Y, Iwaki T. Expression of 8-oxoguanine DNA glycosylase is reduced and associated with neurofibrillary tangles in Alzheimer's disease brain. Acta Neuropathol. 2002;103(1):20–5. doi: 10.1007/s004010100418 11837743.

20. Mao G, Pan X, Zhu BB, Zhang Y, Yuan F, Huang J, et al. Identification and characterization of OGG1 mutations in patients with Alzheimer's disease. Nucleic Acids Res. 2007;35(8):2759–66. doi: 10.1093/nar/gkm189 17426120.

21. Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K. Oxidative damage in nucleic acids and Parkinson's disease. J Neurosci Res. 2007;85(5):919–34. doi: 10.1002/jnr.21191 17279544.

22. Shao C, Xiong S, Li GM, Gu L, Mao G, Markesbery WR, et al. Altered 8-oxoguanine glycosylase in mild cognitive impairment and late-stage Alzheimer's disease brain. Free Radic Biol Med. 2008;45(6):813–9. doi: 10.1016/j.freeradbiomed.2008.06.003 18598755.

23. Sheng Z, Oka S, Tsuchimoto D, Abolhassani N, Nomaru H, Sakumi K, et al. 8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair. The Journal of clinical investigation. 2012;122(12):4344–61. Epub 2012/11/13. doi: 10.1172/JCI65053 23143307.

24. Daimon M, Oizumi T, Toriyama S, Karasawa S, Jimbu Y, Wada K, et al. Association of the Ser326Cys polymorphism in the OGG1 gene with type 2 DM. Biochem Biophys Res Commun. 2009;386(1):26–9. doi: 10.1016/j.bbrc.2009.05.119 19486888.

25. Thameem F, Puppala S, Lehman DM, Stern MP, Blangero J, Abboud HE, et al. The Ser(326)Cys Polymorphism of 8-Oxoguanine Glycosylase 1 (OGG1) Is Associated with Type 2 Diabetes in Mexican Americans. Hum Hered. 2010;70(2):97–101. doi: 10.1159/000291964 20606456.

26. Sampath H, Vartanian V, Rollins MR, Sakumi K, Nakabeppu Y, Lloyd RS. 8-Oxoguanine DNA glycosylase (OGG1) deficiency increases susceptibility to obesity and metabolic dysfunction. PloS one. 2012;7(12):e51697. Epub 2013/01/04. doi: 10.1371/journal.pone.0051697 23284747.

27. Sampath H, Batra AK, Vartanian V, Carmical JR, Prusak D, King IB, et al. Variable penetrance of metabolic phenotypes and development of high-fat diet-induced adiposity in NEIL1-deficient mice. American journal of physiology Endocrinology and metabolism. 2011;300(4):E724–34. Epub 2011/02/03. doi: 10.1152/ajpendo.00387.2010 21285402.

28. Vartanian V, Lowell B, Minko IG, Wood TG, Ceci JD, George S, et al. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci U S A. 2006;103(6):1864–9. doi: 10.1073/pnas.0507444103 16446448.

29. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23. Epub 2007/01/11. doi: 10.1073/pnas.0407076101 15505215.

30. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979–84. Epub 2013/11/16. doi: 10.1073/pnas.0605374104 17210919.

31. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. Epub 2006/12/22. doi: 10.1038/nature05414 17183312.

32. Cani PD, Delzenne NM, Amar J, Burcelin R. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathologie-biologie. 2008;56(5):305–9. Epub 2008/01/08. doi: 10.1016/j.patbio.2007.09.008 18178333.

33. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103. Epub 2009/02/26. doi: 10.1136/gut.2008.165886 19240062.

34. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85. Epub 2012/02/03. doi: 10.1038/nature10809 22297845.

35. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137(5):1716–24.e1-2. Epub 2009/08/27. doi: 10.1053/j.gastro.2009.08.042 19706296.

36. Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annual review of medicine. 2011;62:361–80. Epub 2011/01/14. doi: 10.1146/annurev-med-012510-175505 21226616.

37. Kidane D, Chae WJ, Czochor J, Eckert KA, Glazer PM, Bothwell AL, et al. Interplay between DNA repair and inflammation, and the link to cancer. Critical reviews in biochemistry and molecular biology. 2014;49(2):116–39. Epub 2014/01/15. doi: 10.3109/10409238.2013.875514 24410153.

38. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. Epub 2012/09/14. doi: 10.1038/nature12820 24336217.

39. Krznaric Z, Vranesic Bender D, Mestrovic T. The Mediterranean diet and its association with selected gut bacteria. Curr Opin Clin Nutr Metab Care. 2019;22(5):401–6. Epub 2019/06/25. doi: 10.1097/MCO.0000000000000587 31232713.

40. Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut. 2019;68(8):1417–29. Epub 2019/02/21. doi: 10.1136/gutjnl-2018-317609 30782617.

41. Luca F, Kupfer SS, Knights D, Khoruts A, Blekhman R. Functional Genomics of Host-Microbiome Interactions in Humans. Trends in genetics: TIG. 2018;34(1):30–40. Epub 2017/11/07. doi: 10.1016/j.tig.2017.10.001 29107345.

42. Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA. Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathogens and Disease 2008;5:459–72. doi: 10.1089/fpd.2008.0107 18713063

43. Reeder J, Knight R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nature Methods 2010;7:668–9. doi: 10.1038/nmeth0910-668b 20805793

44. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26(19):2460–1. doi: 10.1093/bioinformatics/btq461 20709691

45. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME Journal 2012;6(3):610–8. doi: 10.1038/ismej.2011.139 22134646

46. Wang Q G G, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 2007;73(16):5261–7. doi: 10.1128/AEM.00062-07 17586664

47. Core Team R. R: A language and environment for statistical computing. Vienna, Austria 2013 http://www.R-project.org/.

48. Chao A. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics. 1984 11:265–70.

49. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods 2010;7:335–6. doi: 10.1038/nmeth.f.303 20383131

50. Good IJ. The population frequencies of species and the estimation of the population parameters Biometrika 1953 40:237–64.

51. Faith DP. Conservation evaluation and phylogenetic diversity Biological Conservation 1992 61:1–10.

52. Shannon C. A mathematical theory of communication. Bell System Technology Journal 1948;27:379–423.

53. Simpson EH. Measurement of diversity. Nature. 1949;163:688.

54. Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecolological Monographs. 1957 27 325–49.

55. Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84 511–25.

56. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 2005 71:8228–35. doi: 10.1128/AEM.71.12.8228-8235.2005 16332807

57. Felsenstein J. Inferring phylogenies. Sunderland, Mass Sinauer Associates, Inc.; 2004.

58. Krzanowski WJ. Principles of multivariate analysis: A user’s perspective. Oxford, United Kingdom.: Oxford University Press; 2000.

59. Jaruga P, Coskun E, Kimbrough K, Jacob A, Johnson WE, Dizdaroglu M. Biomarkers of oxidatively induced DNA damage in dreissenid mussels: A genotoxicity assessment tool for the Laurentian Great Lakes. Environmental toxicology. 2017;32(9):2144–53. Epub 2017/06/02. doi: 10.1002/tox.22427 28568507.

60. Komakula SSB, Tumova J, Kumaraswamy D, Burchat N, Vartanian V, Ye H, et al. The DNA Repair Protein OGG1 Protects Against Obesity by Altering Mitochondrial Energetics in White Adipose Tissue. Scientific Reports. 2018;8(1):14886. doi: 10.1038/s41598-018-33151-1 30291284

61. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiology 2008;8:125. doi: 10.1186/1471-2180-8-125 18652685

62. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011 btr381.

63. Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. The Journal of investigative dermatology 2011;131 2026–32. doi: 10.1038/jid.2011.168 21697884

64. Eren AM, Zozaya M, Taylor CM, Dowd SE, Martin DH, Ferris MJ. Exploring the diversity of Gardnerella vaginalis in the genitourinary tract microbiota of monogamous couples through subtle nucleotide variation. PloS one. 2011;6:e26732. doi: 10.1371/journal.pone.0026732 22046340

65. Swanson KS, Dowd SE, Suchodolski JS, Middelbos IS, Vester BM, Barry KA, et al. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. The ISME Journal 2011 5:639–49. doi: 10.1038/ismej.2010.162 20962874

66. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool Journal of Molecular Biology 1990;215(3):403–10. doi: 10.1016/S0022-2836(05)80360-2 2231712

67. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266–7. doi: 10.1093/bioinformatics/btp636 19914921

68. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 2006;72:5069–72 doi: 10.1128/AEM.03006-05 16820507

69. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research 2009;37:D141–5 doi: 10.1093/nar/gkn879 19004872

70. Cani PD, Delzenne NM, Amar J, Burcelin R. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathologie-biologie. 2008;56(5):305–9. Epub 2008/01/08. doi: 10.1016/j.patbio.2007.09.008 18178333.

71. Chao A. Species richness estimation. In: Balakrishnan N. R CB V B, editor. Encyclopedia of Statistical Sciences New York: Wiley; 2005. p. 7909–16.

72. Jost L. Entropy and diversity. Oikos 2006 113:363–75. doi: 10.1111/j.2006.0030-1299.14714.x

73. Zar JH. Significance Testing of the Spearman Rank Correlation Coefficient. Journal of the American Statistical Association. 1972;67(339):578–80. doi: 10.1080/01621459.1972.10481251

74. Rooks MG, Veiga P, Wardwell-Scott LH, Tickle T, Segata N, Michaud M, et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. Isme j. 2014;8(7):1403–17. Epub 2014/02/07. doi: 10.1038/ismej.2014.3 24500617.

75. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745–57. Epub 2011/05/14. doi: 10.1016/j.cell.2011.04.022 21565393.

76. Stevceva L, Pavli P, Husband A, Matthaei KI, Young IG, Doe WF. Eosinophilia is attenuated in experimental colitis induced in IL-5 deficient mice. Genes and immunity. 2000;1(3):213–8. Epub 2001/02/24. doi: 10.1038/sj.gene.6363654 11196714.

77. Neurath MF. IL-12 family members in experimental colitis. Mucosal Immunology. 2008;1(1):S28–S30. doi: 10.1038/mi.2008.45 19079224

78. Murphy EF, Cotter PD, Healy S, Marques TM, O'Sullivan O, Fouhy F, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59(12):1635–42. Epub 2010/10/12. doi: 10.1136/gut.2010.215665 20926643.

79. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring, Md). 2010;18(1):190–5. Epub 2009/06/06. doi: 10.1038/oby.2009.167 19498350.

80. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science (New York, NY). 2006;312(5778):1355–9. Epub 2006/06/03. doi: 10.1126/science.1124234 16741115.

81. Zhao L. The gut microbiota and obesity: from correlation to causality. Nature reviews Microbiology. 2013;11(9):639–47. Epub 2013/08/06. doi: 10.1038/nrmicro3089 23912213.

82. Moran CP, Shanahan F. Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best practice & research Clinical gastroenterology. 2014;28(4):585–97. Epub 2014/09/10. doi: 10.1016/j.bpg.2014.07.005 25194177.

83. Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS letters. 2014;588(22):4223–33. Epub 2014/10/14. doi: 10.1016/j.febslet.2014.09.039 25307765.

84. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9. Epub 2012/09/14. doi: 10.1038/nature11552 22972297.

85. Del Chierico F, Nobili V, Vernocchi P, Russo A, Stefanis C, Gnani D, et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology (Baltimore, Md). 2017;65(2):451–64. Epub 2016/03/31. doi: 10.1002/hep.28572 27028797.

86. Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nature immunology. 2017;18(8):851–60. Epub 2017/07/20. doi: 10.1038/ni.3780 28722709.

87. Nunberg M, Werbner N, Neuman H, Bersudsky M, Braiman A, Ben-Shoshan M, et al. Interleukin 1alpha-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis. mSystems. 2018;3(3). Epub 2018/05/17. doi: 10.1128/mSystems.00213-17 29766049.

88. Lee JC, Lee HY, Kim TK, Kim MS, Park YM, Kim J, et al. Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis. 2017;12(11):e0187515. doi: 10.1371/journal.pone.0187515 29107964.

89. Aguilera-Aguirre L, Hosoki K, Bacsi A, Radak Z, Sur S, Hegde ML, et al. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling. Free Radic Biol Med. 2015;89:20–33. Epub 2015/07/19. doi: 10.1016/j.freeradbiomed.2015.07.007 26187872.

90. Bacsi A, Aguilera-Aguirre L, Szczesny B, Radak Z, Hazra TK, Sur S, et al. Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation. DNA repair. 2013;12(1):18–26. Epub 2012/11/07. doi: 10.1016/j.dnarep.2012.10.002 23127499.

91. Hajas G, Bacsi A, Aguilera-Aguirre L, Hegde ML, Tapas KH, Sur S, et al. 8-Oxoguanine DNA glycosylase-1 links DNA repair to cellular signaling via the activation of the small GTPase Rac1. Free Radic Biol Med. 2013;61:384–94. Epub 2013/04/25. doi: 10.1016/j.freeradbiomed.2013.04.011 23612479.

92. Touati E, Michel V, Thiberge JM, Ave P, Huerre M, Bourgade F, et al. Deficiency in OGG1 protects against inflammation and mutagenic effects associated with H. pylori infection in mouse. Helicobacter. 2006;11(5):494–505. Epub 2006/09/12. doi: 10.1111/j.1523-5378.2006.00442.x 16961812.

93. Visnes T, Cazares-Korner A, Hao W, Wallner O, Masuyer G, Loseva O, et al. Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science (New York, NY). 2018;362(6416):834–9. Epub 2018/11/18. doi: 10.1126/science.aar8048 30442810.

94. Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. The Journal of clinical investigation. 2008;118(7):2516–25. Epub 2008/06/04. doi: 10.1172/JCI35073 18521188.

95. Calvo JA, Meira LB, Lee CY, Moroski-Erkul CA, Abolhassani N, Taghizadeh K, et al. DNA repair is indispensable for survival after acute inflammation. The Journal of clinical investigation. 2012;122(7):2680–9. Epub 2012/06/12. doi: 10.1172/JCI63338 22684101.

96. Liao J, Seril DN, Lu GG, Zhang M, Toyokuni S, Yang AL, et al. Increased susceptibility of chronic ulcerative colitis-induced carcinoma development in DNA repair enzyme Ogg1 deficient mice. Molecular carcinogenesis. 2008;47(8):638–46. Epub 2008/02/27. doi: 10.1002/mc.20427 18300266.

97. Casorelli I, Pannellini T, De Luca G, Degan P, Chiera F, Iavarone I, et al. The Mutyh base excision repair gene influences the inflammatory response in a mouse model of ulcerative colitis. PloS one. 2010;5(8):e12070. Epub 2010/08/14. doi: 10.1371/journal.pone.0012070 20706593.

98. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G:C—>T:A mutations in colorectal tumors. Nature genetics. 2002;30(2):227–32. Epub 2002/01/31. doi: 10.1038/ng828 11818965.

99. Jones S, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C—>T:A mutations. Human molecular genetics. 2002;11(23):2961–7. Epub 2002/10/24. doi: 10.1093/hmg/11.23.2961 12393807.

100. Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C, et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res. 2003;63(22):7595–9. Epub 2003/11/25. 14633673.

101. Sakamoto K, Tominaga Y, Yamauchi K, Nakatsu Y, Sakumi K, Yoshiyama K, et al. MUTYH-null mice are susceptible to spontaneous and oxidative stress induced intestinal tumorigenesis. Cancer Res. 2007;67(14):6599–604. Epub 2007/07/20. doi: 10.1158/0008-5472.CAN-06-4802 17638869.

102. Sieber OM, Howarth KM, Thirlwell C, Rowan A, Mandir N, Goodlad RA, et al. Myh deficiency enhances intestinal tumorigenesis in multiple intestinal neoplasia (ApcMin/+) mice. Cancer Res. 2004;64(24):8876–81. Epub 2004/12/18. doi: 10.1158/0008-5472.CAN-04-2958 15604247.

103. Pan L, Zhu B, Hao W, Zeng X, Vlahopoulos SA, Hazra TK, et al. Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNA Glycosylase-1-mediated Epigenetic Regulation of Nuclear Factor κB-driven Gene Expression. The Journal of biological chemistry. 2016;291(49):25553–66. Epub 10/18. doi: 10.1074/jbc.M116.751453 27756845.

104. Shouval DS, Biswas A, Kang YH, Griffith AE, Konnikova L, Mascanfroni ID, et al. Interleukin 1β Mediates Intestinal Inflammation in Mice and Patients With Interleukin 10 Receptor Deficiency. Gastroenterology. 2016;151(6):1100–4. Epub 09/28. doi: 10.1053/j.gastro.2016.08.055 27693323.

105. Coccia M, Harrison OJ, Schiering C, Asquith MJ, Becher B, Powrie F, et al. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. The Journal of Experimental Medicine. 2012;209(9):1595. doi: 10.1084/jem.20111453 22891275

106. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn's disease. Gut. 1989;30(6):835–8. Epub 1989/06/01. doi: 10.1136/gut.30.6.835 2787769.

107. McAlindon ME, Hawkey CJ, Mahida YR. Expression of interleukin 1 beta and interleukin 1 beta converting enzyme by intestinal macrophages in health and inflammatory bowel disease. Gut. 1998;42(2):214–9. Epub 1998/04/16. doi: 10.1136/gut.42.2.214 9536946.

108. Reinecker HC, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott RP, et al. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clinical and experimental immunology. 1993;94(1):174–81. Epub 1993/10/01. doi: 10.1111/j.1365-2249.1993.tb05997.x 8403503.

109. Satsangi J, Wolstencroft RA, Cason J, Ainley CC, Dumonde DC, Thompson RP. Interleukin 1 in Crohn's disease. Clinical and experimental immunology. 1987;67(3):594–605. Epub 1987/03/01. 3496997.

110. Kobayashi T, Iijima K, Kita H. Beneficial effects of eosinophils in colitis induced by dextran sulfate sodium. Journal of Allergy and Clinical Immunology. 2004;113(2, Supplement):S172. https://doi.org/10.1016/j.jaci.2004.01.053.

Článek vyšel v časopise


2020 Číslo 1