Integrated targeted serum metabolomic profile and its association with gender, age, disease severity, and pattern identification in acne


Autoři: Min Hee Kim aff001;  In Jin Ha aff002;  Eunok Kim aff002;  Kyuseok Kim aff001
Působiště autorů: Department of Ophthalmology & Otolaryngology & Dermatology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea aff001;  Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul, Republic of Korea aff002;  College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0228074

Souhrn

Background

Westernized diet and nutritional metabolism are important in acne pathogenesis, especially in adult patients. However, clinical and basic data are lacking. Pattern identification (PI) is a tool that results in a diagnostic conclusion based on a cluster of concurrent symptoms and signs in traditional medicine. Acne can be classified by PI. However, whether the metabolomic profile differs according to the PI of acne is unknown. Metabolomic data would help clarify the pathogenesis of acne.

Methods

We conducted a cross-sectional study involving 40 healthy controls and 60 subjects with acne. We evaluated androgens, serum lipids, essential amino acids, nonessential amino acids, other amino acids, and pro-inflammatory cytokines of all subjects and compared the metabolomic profiles between acne subjects and healthy controls, and in subgroups according to gender, age, severity, and PI.

Results

Dehydroepiandrosterone sulfate and serum fatty acids were significantly higher in female subjects, adolescents, and those with disharmony of the thoroughfare and conception vessels. The total essential and nonessential amino acids were significantly lower in the overall, female, adult, severe, and phlegm-stasis group. The latter group exhibited elevated serum levels of interleukin-1β and -6.

Conclusions

This is the first study to investigate serum lipids, amino acids, and cytokines in subjects with acne. We analyzed the differences between metabolomic profiles to determine the diagnostic value of PI. Prospective studies with more patients are needed to confirm the characteristics of each PI and lipidomic data will enrich knowledge concerning lipid mechanism.

Klíčová slova:

Acne – Amino acid metabolism – Androgens – Cytokines – Lipid metabolism – Lipids – Metabolomics – Polycystic ovary syndrome


Zdroje

1. Burris J, Rietkerk W, Woolf K. Acne: the role of medical nutrition therapy. J Acad Nutr Diet. 2013;113(3):416–30. Epub 2013/02/27. doi: 10.1016/j.jand.2012.11.016 23438493.

2. Cerman AA, Aktas E, Altunay IK, Arici JE, Tulunay A, Ozturk FY. Dietary glycemic factors, insulin resistance, and adiponectin levels in acne vulgaris. J Am Acad Dermatol. 2016;75(1):155–62. Epub 2016/04/12. doi: 10.1016/j.jaad.2016.02.1220 27061046.

3. Melnik BC. Evidence for acne-promoting effects of milk and other insulinotropic dairy products. Nestle Nutr Workshop Ser Pediatr Program. 2011;67:131–45. Epub 2011/02/22. doi: 10.1159/000325580 21335995.

4. Lynn DD, Umari T, Dunnick CA, Dellavalle RP. The epidemiology of acne vulgaris in late adolescence. Adolesc Health Med Ther. 2016;7:13–25. Epub 2016/03/10. doi: 10.2147/AHMT.S55832 26955297; PubMed Central PMCID: PMC4769025.

5. Holzmann R, Shakery K. Postadolescent acne in females. Skin Pharmacol Physiol. 2014;27 Suppl 1:3–8. Epub 2013/12/07. doi: 10.1159/000354887 24280643.

6. Dreno B. Treatment of adult female acne: a new challenge. J Eur Acad Dermatol Venereol. 2015;29 Suppl 5:14–9. Epub 2015/06/11. doi: 10.1111/jdv.13188 26059821.

7. Ju Q, Tao T, Hu T, Karadag AS, Al-Khuzaei S, Chen W. Sex hormones and acne. Clin Dermatol. 2017;35(2):130–7. Epub 2017/03/10. doi: 10.1016/j.clindermatol.2016.10.004 28274349.

8. Albuquerque RG, Rocha MA, Bagatin E, Tufik S, Andersen ML. Could adult female acne be associated with modern life? Arch Dermatol Res. 2014;306(8):683–8. Epub 2014/06/22. doi: 10.1007/s00403-014-1482-6 24952024.

9. Wolkenstein P, Misery L, Amici JM, Maghia R, Branchoux S, Cazeau C, et al. Smoking and dietary factors associated with moderate-to-severe acne in French adolescents and young adults: results of a survey using a representative sample. Dermatology. 2015;230(1):34–9. Epub 2014/11/22. doi: 10.1159/000366195 25413494.

10. Valeyrie-Allanore L, Sassolas B, Roujeau JC. Drug-induced skin, nail and hair disorders. Drug Saf. 2007;30(11):1011–30. Epub 2007/11/02. doi: 10.2165/00002018-200730110-00003 17973540.

11. Ju Q, Fimmel S, Hinz N, Stahlmann R, Xia L, Zouboulis CC. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters sebaceous gland cell differentiation in vitro. Exp Dermatol. 2011;20(4):320–5. Epub 2011/03/18. doi: 10.1111/j.1600-0625.2010.01204.x 21410761.

12. Evans DM, Kirk KM, Nyholt DR, Novac C, Martin NG. Teenage acne is influenced by genetic factors. Br J Dermatol. 2005;152(3):579–81. Epub 2005/03/25. doi: 10.1111/j.1365-2133.2005.06387.x 15787839.

13. Szabo K, Kemeny L. Studying the genetic predisposing factors in the pathogenesis of acne vulgaris. Hum Immunol. 2011;72(9):766–73. Epub 2011/06/15. doi: 10.1016/j.humimm.2011.05.012 21669244.

14. Zouboulis CC. Acne as a chronic systemic disease. Clin Dermatol. 2014;32(3):389–96. Epub 2014/04/29. doi: 10.1016/j.clindermatol.2013.11.005 24767186.

15. Organization WH. WHO International Standard Terminologies on Traditional Medicine in the Western Pacific Region: World Health Organization; 2007.

16. Lian F, Wu HC, Sun ZG, Guo Y, Shi L, Xue MY. Effects of Liuwei Dihuang Granule ([symbols; see text]) on the outcomes of in vitro fertilization pre-embryo transfer in infertility women with Kidney-yin deficiency syndrome and the proteome expressions in the follicular fluid. Chin J Integr Med. 2014;20(7):503–9. Epub 2014/04/10. doi: 10.1007/s11655-014-1712-y 24715425.

17. Wang Y, Chuo WJ, Li C, Guo SZ, Chen JX, Yu JD, et al. Energy metabolism disorder and myocardial injury in chronic myocardial ischemia with Qi deficiency and blood stasis syndrome based on 2-DE proteomics. Chin J Integr Med. 2013;19(8):616–20. Epub 2012/12/06. doi: 10.1007/s11655-012-1230-8 23212566.

18. Shin J-H, Jeong W-Y, Moon Y-K, Nam H-J, Kim Y-B, Lee J-H, et al. An Expert Survey for Developing the Pattern Diagnosis Instrument of Acne. The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology. 2015;28(2):23–32. doi: 10.6114/jkood.2015.28.2.023

19. Kim K, Ha I, Kim E, Kim K. A comparative study of biological and metabolic biomarkers between healthy individuals and patients with acne vulgaris: A cross-sectional study protocol. Medicine (Baltimore). 2017;96(45):e8554. Epub 2017/11/16. doi: 10.1097/MD.0000000000008554 29137071; PubMed Central PMCID: PMC5690764.

20. Barnes S, Benton HP, Casazza K, Cooper SJ, Cui X, Du X, et al. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. J Mass Spectrom. 2016;51(7):ii–iii. Epub 2016/07/21. doi: 10.1002/jms.3672 27434812.

21. Skroza N, Tolino E, Mambrin A, Zuber S, Balduzzi V, Marchesiello A, et al. Adult Acne Versus Adolescent Acne: A Retrospective Study of 1,167 Patients. J Clin Aesthet Dermatol. 2018;11(1):21–5. Epub 2018/02/08. 29410726; PubMed Central PMCID: PMC5788264.

22. Sung K RY, Choi E, et al. Korean acne grading system. Korean J Dermatol. 2004;42:1241–7.

23. Rodrigues L, Eemco. EEMCO guidance to the in vivo assessment of tensile functional properties of the skin. Part 2: instrumentation and test modes. Skin Pharmacol Appl Skin Physiol. 2001;14(1):52–67. Epub 2001/02/15. doi: 10.1159/000056334 11174091.

24. Firooz A, Sadr B, Babakoohi S, Sarraf-Yazdy M, Fanian F, Kazerouni-Timsar A, et al. Variation of biophysical parameters of the skin with age, gender, and body region. ScientificWorldJournal. 2012;2012:386936. Epub 2012/04/27. doi: 10.1100/2012/386936 22536139; PubMed Central PMCID: PMC3317612.

25. Melnik BC. Acne vulgaris: The metabolic syndrome of the pilosebaceous follicle. Clin Dermatol. 2018;36(1):29–40. Epub 2017/12/16. doi: 10.1016/j.clindermatol.2017.09.006 29241749.

26. Seleit I, Bakry OA, Abdou AG, Hashim A. Body mass index, selected dietary factors, and acne severity: are they related to in situ expression of insulin-like growth factor-1? Anal Quant Cytopathol Histpathol. 2014;36(5):267–78. Epub 2015/03/26. 25803999.

27. Zhang M, Qureshi AA, Fortner RT, Hankinson SE, Wei Q, Wang LE, et al. Teenage acne and cancer risk in US women: A prospective cohort study. Cancer. 2015;121(10):1681–7. Epub 2015/01/13. doi: 10.1002/cncr.29216 25572604; PubMed Central PMCID: PMC4424088.

28. Melnik BC, John SM, Schmitz G. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome. Nutr Metab (Lond). 2011;8:41. Epub 2011/06/28. doi: 10.1186/1743-7075-8-41 21699736; PubMed Central PMCID: PMC3141390.

29. Melnik B. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20–32. Epub 2012/08/08. doi: 10.4161/derm.19828 22870349; PubMed Central PMCID: PMC3408989.

30. Ricoult SJ, Manning BD. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013;14(3):242–51. Epub 2013/02/13. doi: 10.1038/embor.2013.5 23399656; PubMed Central PMCID: PMC3589096.

31. Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell. 2015;161(1):67–83. Epub 2015/03/31. doi: 10.1016/j.cell.2015.02.041 25815986; PubMed Central PMCID: PMC4384161.

32. Lucky AW, Biro FM, Huster GA, Leach AD, Morrison JA, Ratterman J. Acne vulgaris in premenarchal girls. An early sign of puberty associated with rising levels of dehydroepiandrosterone. Arch Dermatol. 1994;130(3):308–14. Epub 1994/03/01. doi: 10.1001/archderm.130.3.308 8129408.

33. Lucky AW, Biro FM, Simbartl LA, Morrison JA, Sorg NW. Predictors of severity of acne vulgaris in young adolescent girls: results of a five-year longitudinal study. J Pediatr. 1997;130(1):30–9. Epub 1997/01/01. doi: 10.1016/s0022-3476(97)70307-x 9003848.

34. Collier CN, Harper JC, Cafardi JA, Cantrell WC, Wang W, Foster KW, et al. The prevalence of acne in adults 20 years and older. J Am Acad Dermatol. 2008;58(1):56–9. Epub 2007/10/20. doi: 10.1016/j.jaad.2007.06.045 17945383.

35. Williams C, Layton AM. Persistent acne in women: implications for the patient and for therapy. Am J Clin Dermatol. 2006;7(5):281–90. Epub 2006/09/30. doi: 10.2165/00128071-200607050-00002 17007539.

36. Preneau S, Dreno B. Female acne—a different subtype of teenager acne? J Eur Acad Dermatol Venereol. 2012;26(3):277–82. Epub 2011/08/19. doi: 10.1111/j.1468-3083.2011.04214.x 21848892.

37. Sharif E, Rahman S, Zia Y, Rizk NM. The frequency of polycystic ovary syndrome in young reproductive females in Qatar. Int J Womens Health. 2017;9:1–10. Epub 2016/12/30. doi: 10.2147/IJWH.S120027 28031728; PubMed Central PMCID: PMC5179205.

38. Zhou M, Gan Y, He C, Chen Z, Jia Y. Lipidomics reveals skin surface lipid abnormity in acne in young men. Br J Dermatol. 2018;179(3):732–40. Epub 2018/04/07. doi: 10.1111/bjd.16655 29624645.

39. Camera E, Ludovici M, Tortorella S, Sinagra JL, Capitanio B, Goracci L, et al. Use of lipidomics to investigate sebum dysfunction in juvenile acne. J Lipid Res. 2016;57(6):1051–8. Epub 2016/04/30. doi: 10.1194/jlr.M067942 27127078; PubMed Central PMCID: PMC4878189.

40. Zouboulis CC, Jourdan E, Picardo M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J Eur Acad Dermatol Venereol. 2014;28(5):527–32. Epub 2013/10/19. doi: 10.1111/jdv.12298 24134468.

41. Arora MK, Seth S, Dayal S, Trehan AS, Seth M. Serum lipid profile in female patients with severe acne vulgaris. Clin Lab. 2014;60(7):1201–5. Epub 2014/08/20. doi: 10.7754/clin.lab.2013.120811 25134390.

42. Jiang H, Li CY, Zhou L, Lu B, Lin Y, Huang X, et al. Acne patients frequently associated with abnormal plasma lipid profile. J Dermatol. 2015;42(3):296–9. Epub 2015/02/03. doi: 10.1111/1346-8138.12761 25639454.

43. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26. Epub 2009/04/10. doi: 10.1016/j.cmet.2009.02.002 19356713; PubMed Central PMCID: PMC3640280.

44. Cong TX, Hao D, Wen X, Li XH, He G, Jiang X. From pathogenesis of acne vulgaris to anti-acne agents. Arch Dermatol Res. 2019;311(5):337–49. Epub 2019/03/13. doi: 10.1007/s00403-019-01908-x 30859308.

45. Hisamatsu T, Okamoto S, Hashimoto M, Muramatsu T, Andou A, Uo M, et al. Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease. PLoS One. 2012;7(1):e31131. Epub 2012/02/04. doi: 10.1371/journal.pone.0031131 22303484; PubMed Central PMCID: PMC3269436.

46. Gerber DA. Low free serum histidine concentration in rheumatoid arthritis. A measure of disease activity. J Clin Invest. 1975;55(6):1164–73. Epub 1975/06/01. doi: 10.1172/JCI108033 1079527; PubMed Central PMCID: PMC301869.

47. Watanabe M, Suliman ME, Qureshi AR, Garcia-Lopez E, Barany P, Heimburger O, et al. Consequences of low plasma histidine in chronic kidney disease patients: associations with inflammation, oxidative stress, and mortality. Am J Clin Nutr. 2008;87(6):1860–6. Epub 2008/06/11. doi: 10.1093/ajcn/87.6.1860 18541578.

48. Kim JH, Ahn B, Choi SG, In S, Goh AR, Park SG, et al. Amino acids disrupt calcium-dependent adhesion of stratum corneum. PLoS One. 2019;14(4):e0215244. Epub 2019/04/17. doi: 10.1371/journal.pone.0215244 30990830.

49. Weber SU, Thiele JJ, Han N, Luu C, Valacchi G, Weber S, et al. Topical alpha-tocotrienol supplementation inhibits lipid peroxidation but fails to mitigate increased transepidermal water loss after benzoyl peroxide treatment of human skin. Free Radic Biol Med. 2003;34(2):170–6. Epub 2003/01/11. doi: 10.1016/s0891-5849(02)01187-5 12521598.

50. Im M, Kim SY, Sohn KC, Choi DK, Lee Y, Seo YJ, et al. Epigallocatechin-3-gallate suppresses IGF-I-induced lipogenesis and cytokine expression in SZ95 sebocytes. J Invest Dermatol. 2012;132(12):2700–8. Epub 2012/07/06. doi: 10.1038/jid.2012.202 22763784.

51. Kim H, Moon SY, Sohn MY, Lee WJ. Insulin-Like Growth Factor-1 Increases the Expression of Inflammatory Biomarkers and Sebum Production in Cultured Sebocytes. Ann Dermatol. 2017;29(1):20–5. Epub 2017/02/23. doi: 10.5021/ad.2017.29.1.20 28223742; PubMed Central PMCID: PMC5318522.

52. Kim J. Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology. 2005;211(3):193–8. Epub 2005/10/06. doi: 10.1159/000087011 16205063.

53. Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006;8(8):2195–205. Epub 2006/06/27. doi: 10.1016/j.micinf.2006.04.001 16797202.


Článek vyšel v časopise

PLOS One


2020 Číslo 1