Ontogenetic similarities between giraffe and sauropod neck osteological mobility


Autoři: Daniel Vidal aff001;  Pedro Mocho aff001;  Adrián Páramo aff004;  José Luis Sanz aff004;  Francisco Ortega aff001
Působiště autorů: Grupo de Biología Evolutiva, Facultad de Ciencias, UNED, Paseo Senda Del Rey, Madrid, Spain aff001;  Instituto Dom Luiz, Universidade de Lisboa, Bloco C6, 38 Piso, sala 6.3.57, Campo Grande, Lisbon, Portugal aff002;  The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, United States of America aff003;  Unidad de Paleontología, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin, Madrid, Spain aff004;  Real Academia Española de Ciencias Exactas, Físicas y Naturales, Calle Valverde, Madrid, Spain aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227537

Souhrn

The functional morphology of sauropod dinosaur long necks has been studied extensively, with virtual approaches yielding results that are difficult to obtain with actual fossils, due to their extreme fragility and size. However, analyses on virtual fossils have been questioned on several of their premises, such as the ability to accurately reconstruct intervertebral tissue with only skeletal data; or whether zygapophyseal overlap can be used to determine the limits of range of motion, since some extreme neck poses in extant giraffes have been claimed not to retain any zygapophyseal overlap. We compared articulation and range of motion in extant giraffes with the exceptionally well-preserved and complete basally branching eusauropod Spinophorosaurus nigerensis from the Middle (?) Jurassic of Niger, under the same virtual paleontology protocols. We examined the articulation and range of motion on grown and young specimens of both Spinophorosaurus and giraffes in order to record any potential changes during ontogeny. Also, the postures of virtual giraffes were compared with previously published data from living animals in the wild. Our analyses show that: (i) articulation of virtual bones in osteologically neutral pose (ONP) does enable accurate prediction of the amount of inter-vertebral space in giraffes and, roughly, in Spinophorosaurus; (ii) even the most extreme neck postures attained by living giraffes in the wild do not require to disarticulate cervical vertebrae; (iii) both living giraffes and Spinophorosaurus have large intervertebral spaces between their cervical centra in early ontogenetical stages, which decrease as ontogeny advances; and (iv) that grown specimens have a greater osteological range of motion in living giraffes and Spinophorosaurus.

Klíčová slova:

Cervical vertebrae – Fossils – Neck – Osteology – Sauropoda – Skeletal joints – Skeleton – Vertebrae


Zdroje

1. Rauhut OWM, Remes K, Fechner R, Cladera G, Puerta P. Discovery of a short-necked sauropod dinosaur from the Late Jurassic period of Patagonia. Nature. 2005;435: 670–672. doi: 10.1038/nature03623 15931221

2. Young C, Zhao X. Mamenchisaurus hochuanensis. Inst Vertebr Paleontol Paleonanthropology Monogr. 1972;1: 1–30.

3. Ouyang H, Ye Y. The first Mamenchisaurian skeleton with complete skull Mamenchisaurus youngi. Chengdu: Sichuan Science Technology Press; 2002.

4. Wilson J, Sereno PC. Early Evolution and Higher Level Phylogeny of Sauropod Dinosaurs. J Vertebr Paleontol. 1998;18: 1–68. Available: http://www.jstor.org/stable/3889325

5. Marsh OC. Principal characters of American Jurassic dinosaurs; Part VI, Restoration of Brontosaurus. Am J Sci. 1883;26: 81–85. doi: 10.2475/ajs.s3-26.152.81

6. Hatcher JB. Diplodocus (Marsh): Its osteology, taxonomy and probable habits, with a restoration of the skeleton. Mem Carnegie Museum. 1901;1: 1–63.

7. Martin J. Mobility and feeding of Cetiosaurus (Saurischia, Sauropoda): why the long neck? In: Currie PJ, Koster EH, editors. 4th Symp Mesozoic Terrestrial Ecosystems. 1987. pp. 154–159.

8. Stevens KA, Parrish MJ. Neck Posture and Feeding Habits of Two Jurassic Sauropod Dinosaurs. Science (80-). 1999;284: 798–800. doi: 10.1126/science.284.5415.798 10221910

9. Stevens KA. DinoMorph: Parametric modeling of skeletal structures. Senckenbergiana Lethaea. 2002;82: 23–34. doi: 10.1007/BF03043770

10. Stevens KA, Parrish MJ. Neck posture, dentition, and feeding strategies in Jurassic sauropod dinosaurs. In: Tidwell V, Carpenter K, editors. Thunder-lizards: The Sauropodomorph Dinosaurs. 1st ed. Bloomington: Indiana University Press; 2005. pp. 212–232.

11. Dzemski G, Christian A. Flexibility Along the Neck of the Ostrich (Struthio camelus) and Consequences for the Reconstruction of Dinosaurs With Extreme Neck Length. J Morphol. 2007;268: 701–714. doi: 10.1002/jmor.10542 17514722

12. Taylor MP, Wedel MJ. The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs. PLoS One. 2013; doi: 10.1371/journal.pone.0078214 24205163

13. Paul GS. Restoring the life appearances of dinosaurs. The Scientific American book of dinosaurs. New York: St Martin’s Press; 2000. pp. 78–106.

14. Mallison H. The Digital Plateosaurus I: Body Mass, Mass Distribution and Posture Assessed Using Cad and Cae on a Digitally Mounted Complete Skeleton. Palaeontol Electron. 2010;2: 1–26. Available: http://www.uv.es/~pardomv/pe/2010_2/198/abstracts.html

15. Mallison H. The Digital Plateosaurus II: An Assessment of the Range of Motion of the Limbs and Vertebral Column and of Previous Reconstructions using a Digital Skeletal Mount. Acta Palaeontol Pol. 2010;55: 433–458. doi: 10.4202/app.2009.0075

16. Taylor MP. Almost all known sauropod necks are incomplete and distorted. PeerJ. 2015; 1–19.

17. Remes K, Ortega F, Fierro I, Joger U, Kosma R, Ferrer JMM, et al. A new basal sauropod dinosaur from the middle Jurassic of Niger and the early evolution of sauropoda. PLoS One. 2009;4: e6924. doi: 10.1371/journal.pone.0006924 19756139

18. Mocho P, Ortega F, Aberasturi A, Escaso F. Spinophorosaurus (Sauropoda), a new look inside eusauropod evolution. VI Jornadas Internacionales sobre Paleontologia de dinosaurios Abstract Book. 2013. pp. 89–90.

19. Páramo A, Ortega F. A probable juvenile Spinophorosaurus nigerensis (Sauropoda) from the Middle Jurassic of Niger. In: Royo-Torres R, Gascó F, Alcalá L, editors. Fundamental 20. 2012. pp. 177–178.

20. Taylor MP. Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs. PeerJ. 2014; doi: 10.7717/peerj.712 25551027

21. Paul GS. Restoring Maximum Vertical Browsing Reach in Sauropod Dinosaurs. Anat Rec. 2017;300: 1802–1825. doi: 10.1002/ar.23617 28556505

22. Stevens KA. The articulation of sauropod necks: methodology and mythology. PLoS One. 2013;8: 1–27. doi: 10.1371/journal.pone.0078572 24205266

23. Fronimos JA, Wilson JA. Neurocentral Suture Complexity and Stress Distribution in the Vertebral Column of a Sauropod Dinosaur. Ameghiniana. 2017; doi: 10.5710/AMGH.05.09.2016.3009

24. Brochu CA. Closure of neurocentral sutures during crocodilian ontogeny: Implications for maturity assessment in fossil archosaurs. J Vertebr Paleontol. 1996;16: 49–62. doi: 10.1080/02724634.1996.10011283

25. Irmis RB. Axial skeleton ontogeny in the Parasuchia (Archosauria: Pseudosuchia) and its implications for ontogenetic determination in archosaurs. J Vertebr Paleontol. 2007;27: 350–361. doi: 10.1671/0272-4634(2007)27[350:asoitp]2.0.co;2

26. Jentgen-Ceschino B, Stein K, Fisher V. Cases of pathological bone growth in Isanosaurus and Spinophorosaurus (Sauropoda): periosteal reactions and tumor-like conditions in dinosaurs. XVII EAVP Program and abstracts. 2019. p. 51.

27. Mallison H, Wings O. Photogrammetry in paleontology—A practical guide. J Paleontol Tech. 2014;12: 1–31.

28. Zhang Y. The Middle Jurassic dinosaur fauna from Dashanpu, Zigong, Sichuan Vol I. Sauropod dinosaurs (1). Shunosaurus. Sichuan Publ House Sci Technol. 1988; 1–89.

29. Sereno PC, Beck AL, Dutheil DB, Larsson HCE, Lyon GH, Moussa B, et al. Cretaceous sauropods from the sahara and the uneven rate of skeletal evolution among dinosaurs. Science (80-). 1999;265: 267–271. doi: 10.1126/science.286.5443.1342 10558986

30. Taylor MP, Wedel MJ, Naish D. Head and Neck Posture in Sauropod Dinosaurs Inferred from Extant Animals. Acta Palaeontol Pol. 2009;54: 213–220. doi: 10.4202/app.2009.0007

31. Christian A, Peng G, Sekiya T, Ye Y, Wulf MG, Steuer T. Biomechanical reconstructions and selective advantages of neck poses and feeding strategies of Sauropods with the example of Mamenchisaurus youngi. PLoS One. 2013;8: 1–8. doi: 10.1371/journal.pone.0071172 24204557

32. Carabajal AP, Carballido JL, Currie PJ. Braincase, neuroanatomy, and neck posture of Amargasaurus cazaui (Sauropoda, Dicraeosauridae) and its implications for understanding head posture in sauropods. J Vertebr Paleontol. 2014;34: 870–882. doi: 10.1080/02724634.2014.838174

33. Reiss S, Mallison H. Motion range of the manus of Plateosaurus engelhardti von Meyer, 1837. Paleontol Electron. 2014;17: 1–19.

34. Ikejiri T. Anatomy of Camarasaurus lentus (Dinosauria: Sauropoda) from the Morrison formation (Late Jurassic), Thermopolis, Central Wyoming, with determination and interpretation of ontogenetic, sexual dimorphic and individual variation in the genus. Fort Hays State University. 2004.

35. Taylor MP, Wedel MJ. Why sauropods had long necks; and why giraffes have short necks. PeerJ. 2013;1: 1–41. doi: 10.7717/peerj.36 23638372

36. Mallison H. CAD assessment of the posture and range of motion of Kentrosaurus aethiopicus Hennig 1915. Swiss J Geosci. 2010;103: 211–233. doi: 10.1007/s00015-010-0024-2

37. Holliday CM, Ridgely RC, Sedlmayr JC, Witmer LM. Cartilaginous epiphyses in extant archosaurs and their implications for reconstructing limb function in dinosaurs. PLoS One. 2010; doi: 10.1371/journal.pone.0013120 20927347

38. Christian A. Neck posture and overall body design in sauropods. Foss Rec. 2002;5: 271–281. doi: 10.1002/mmng.20020050116

39. Faux CM, Padian K. The opisthotonic posture of vertebrate skeletons: postmortem contraction or death throes? Paleobiology. 2007; doi: 10.1666/06015.1

40. Reisdorf AG, Wuttke M. Re-evaluating Moodie’s opisthotonic-posture hypothesis in fossil vertebrates part I: Reptiles-the taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany). Palaeobiodiversity and Palaeoenvironments. 2012. doi: 10.1007/s12549-011-0068-y

41. Cambra-Moo O. Bioestratinomía y fosildiagénesis de arcosaurios aplicación de la actuotafonomía al estudio de la influencia paleobiológica en el proceso tafonómico. Universidad Autónoma de Madrid. 2006.

42. Hillis DM. Principles of Life. Palgrave Macmillan; 2011.

43. McNamara KJ. Heterochrony: the Evolution of Development. Evol Educ Outreach. 2012;5: 203–218. doi: 10.1007/s12052-012-0420-3

44. Allometry Tschanz K. and heterochrony in the growth of the neck of prolacertiform reptiles. Palaeontology. 1988;31: 997–1011.

45. Taylor MP, Wedel MJ. The neck of Barosaurus: longer, wider and weirder than those of Diplodocus and other diplodocines. PeerJ Prepr. 2016;4:e67v2.

46. Dagg AI. The Role of the Neck in the Movements of the Giraffe. J Mammal. 1962;43: 88–97. doi: 10.2307/1376883

47. Christian A, Dzemski G. Reconstruction of the cervical skeleton posture of Brachiosaurus brancai Janensch, 1914 by an analysis of the intervertebral stress along the neck and a comparison with the results of different approaches. Foss Rec–Mitteilungen aus dem Museum für Naturkd. 2007;10: 38–49. doi: 10.1002/mmng.200600017

48. Christian A. Some sauropods raised their necks—evidence for high browsing in Euhelopus zdanskyi. Biol Lett. 2010;6: 823–825. doi: 10.1098/rsbl.2010.0359 20519198

49. Sander PM, Christian A, Clauss M, Fechner R, Gee CT, Griebeler EM, et al. Biology of the sauropod dinosaurs: The evolution of gigantism. Biol Rev. 2011;86: 117–155. doi: 10.1111/j.1469-185X.2010.00137.x 21251189

50. Young TP, Isbell LA. Sex Differences in Giraffe Feeding Ecology: Energetic and Social Constraints. Ethology. 1991;87: 79–89. doi: 10.1111/j.1439-0310.1991.tb01190.x

51. Whitlock JA. Inferences of diplodocoid (Sauropoda: Dinosauria) feeding behavior from snout shape and microwear analyses. PLoS One. 2011;6. doi: 10.1371/journal.pone.0018304 21494685

52. Sereno PC, Wilson JA, Witmer LM, Whitlock JA, Maga A, Ide O, et al. Structural extremes in a cretaceous dinosaur. PLoS One. 2007;2: 1–9. doi: 10.1371/journal.pone.0001230 18030355

53. Mallison H. Rearing Giants–kinetic-dynamic modeling of sauropod bipedal and tripodal poses. In: Klein N, Remes K, Gee C, Sander PM, editors. Biology of the Sauropod Dinosaurs: Understanding the life of giants. Indiana University Press; 2011. pp. 237–250.

54. Seeber PA, Ndlovu HT, Duncan P, Ganswindt A. Grazing behaviour of the giraffe in Hwange National Park, Zimbabwe. Afr J Ecol. 2012;50: 247–250. doi: 10.1111/j.1365-2028.2011.01314.x

55. Seeber PA, Ciofolo I, Ganswindt A. Behavioural inventory of the giraffe (Giraffa camelopardalis). BMC Res Notes. 2012;5. doi: 10.1186/1756-0500-5-650 23173954

56. Dagg AI. Giraffa camelopardalis. Mamm Species. 1971;5: 1–8. doi: 10.2307/3503830

57. Solounias N. The remarkable anatomy of the giraffe’s neck. J Zool. 1999;247: 257–268. doi: 10.1017/S0952836999002137

58. Horwich RH, Kitchen C, Wangel M, Ruthe R. Behavioral development in okapis and giraffes. Zoo Biol. 1983;2: 105–125. doi: 10.1002/zoo.1430020204

59. Tschopp E, Mateus O. Clavicles, interclavicles, gastralia, and sternal ribs in sauropod dinosaurs: New reports from Diplodocidae and their morphological, functional and evolutionary implications. J Anat. 2013;222: 321–340. doi: 10.1111/joa.12012 23190365

60. Remes K. Evolution of the Pectoral girdle and Forelimb in Sauropodomorpha (Dinosauria, Saurischia): Osteology, Myology and Fuction. Evolution. Ludwig-Maximilians-Universität München. 2007. doi: 10.1002/ajpa.1330170113

61. Klein N, Christian A, Sander PM. Histology shows that elongated neck ribs in sauropod dinosaurs are ossified tendons. Biol Lett. 2012;8: 1032–1035. doi: 10.1098/rsbl.2012.0778 23034173

62. Martin J, Martin-Rolland V, Frey E. Not cranes or masts, but beams: the biomechanics of sauropod necks. Oryctos. 1998;1: 113–120.

63. Persons WS, Currie PJ. Dragon Tails: Convergent Caudal Morphology in Winged Archosaurs. Acta Geol Sin. 2012;86: 1402–1412.


Článek vyšel v časopise

PLOS One


2020 Číslo 1