Significant changes in synovial fluid microRNAs after high tibial osteotomy in medial compartmental knee osteoarthritis: Identification of potential prognostic biomarkers

Autoři: Yoon Hae Kwak aff001;  Dae-Kyung Kwak aff002;  Nan Young Kim aff003;  Yun Joong Kim aff003;  Jeong Seop Lim aff002;  Je-Hyun Yoo aff002
Působiště autorů: Department of Orthopaedic Surgery, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea aff001;  Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea aff002;  Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Medical Center, Anyang, Republic of Korea aff003;  Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea aff004;  Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227596


High tibial osteotomy (HTO) is a well-established treatment for medial compartmental knee osteoarthritis. Several microRNAs (miRNAs) are involved in osteoarthritis progression and are useful as osteoarthritis-related biomarkers. In this prospective study, we investigated differentially expressed microRNAs in the synovial fluid (SF) before and after HTO in patients with medial compartmental knee osteoarthritis to identify microRNAs that can be used as prognostic biomarkers. We used miRNA-PCR arrays to screen for miRNAs in SF samples obtained preoperatively and 6 months postoperatively from 6 patients with medial compartmental knee osteoarthritis who were treated with medial open wedge HTO. Differentially expressed miRNAs identified in the profiling stage were validated by real-time quantitative PCR in 22 other patients who had also been treated with HTO. All patients radiographically corresponded to Kellgren-Lawrence grade II or III with medial compartmental osteoarthritis. These patients were clinically assessed using a visual analogue scale and Western Ontario McMaster Universities scores. Mechanical axis changes were measured on standing anteroposterior radiographs of the lower limbs assessed preoperatively and at 6 months postoperatively. Among 84 miRNAs known to be involved in the inflammatory process, 14 were expressed in all SF specimens and 3 (miR-30a-5p, miR-29a-3p, and miR-30c-5p) were differentially expressed in the profiling stage. These 3 miRNAs, as well as 4 other miRNAs (miR-378a-5p, miR-140-3p, miR-23a-3p, miR-27b-3p), are related to osteoarthritis progression. These results were validated in the SF from 22 patients. Clinical and radiological outcomes improved after HTO in all patients, and only 2 miRNAs (miR-30c-5p and miR-23a-3p) were significantly differentially expressed between preoperative and postoperative 6-month SF samples (p = 0.006 and 0.007, respectively). Of these two miRNAs, miR-30c-5p correlated with postoperative pain relief. This study provides potential prognostic miRNAs after HTO and further investigations should be considered to determine clinical implications of these miRNAs.

Klíčová slova:

Biomarkers – Cartilage – Inflammation – Knees – MicroRNAs – Osteoarthritis – Polymerase chain reaction – Synovial fluid


1. Niemeyer P, Schmal H, Hauschild O, Von Heyden J, Sudkamp NP, Kostler W. Open-wedge osteotomy using an internal plate fixator in patients with medial-compartment gonarthritis and varus malalignment: 3-year results with regard to preoperative arthroscopic and radiographic findings. Arthroscopy. 2010;26: 1607–1616. doi: 10.1016/j.arthro.2010.05.006 20926232

2. Jung WH, Chun CW, Lee JH, Ha JH, Kim JH, Jeoung JH. Comparative study of medial opening-wedge high tibial osteotomy using 2 different implants. Arthroscopy. 2013;29: 1063–1071. doi: 10.1016/j.arthro.2013.02.020 23623294

3. Jung WH, Takeuchi R, Chun CW, Lee JS, Ha JH, Kim JH, et al. Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy. 2014;30: 72–79. doi: 10.1016/j.arthro.2013.10.008 24384273

4. Prodromos CC, Amendola A, Jakob RP. High tibial osteotomy: indications, techniques, and postoperative management. Instr Course Lect. 2015;64: 555–565. 25745938

5. Kanamiya T, Naito M, Hara M, Yoshimura I. The influences of biomechanical factors on cartilage regeneration after high tibial osteotomy for knees with medial compartment osteoarthritis: clinical and arthroscopic observation. Arthroscopy. 2002;18: 725–729. doi: 10.1053/jars.2002.35258 12209429

6. Nugent M. MicroRNAs: exploring new horizons in osteoarthritis. Osteoarthritis Cartilage. 2016;24: 573–580. doi: 10.1016/j.joca.2015.10.018 26576510

7. Skinner MK. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics. 2011;6: 838–842. doi: 10.4161/epi.6.7.16537 21637037

8. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9: 102–114. doi: 10.1038/nrg2290 18197166

9. Zhang M, Lygrisse K, Wang J. Role of microRNA in osteoarthritis. J Arthritis. 2017;6. Epub

10. Beyer C, Zampetaki A, Lin NY, Kleyer A, Perricone C, Iagnocco A, et al. Signature of circulating microRNAs in osteoarthritis. Ann Rheum Dis. 2015;74: e18. doi: 10.1136/annrheumdis-2013-204698 24515954

11. Dong J, Bao J, Feng R, Zhao Z, Lu Q, Wang G, et al. Circulating microRNAs: a novel potential biomarker for diagnosing acute aortic dissection. Sci Rep. 2017;7: 12784. doi: 10.1038/s41598-017-13104-w 28986538

12. Cong L, Zhu Y, Tu G. A bioinformatic analysis of microRNAs role in osteoarthritis. Osteoarthritis Cartilage. 2017;25: 1362–1371. doi: 10.1016/j.joca.2017.03.012 28336453

13. Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol. 2011;80: 193–208. doi: 10.1016/j.critrevonc.2010.11.004 21145252

14. Birmingham TB, Moyer R, Leitch K, Chesworth B, Bryant D, Willits K, et al. Changes in biomechanical risk factors for knee osteoarthritis and their association with 5-year clinically important improvement after limb realignment surgery. Osteoarthritis Cartilage. 2017;25: 1999–2006. doi: 10.1016/j.joca.2017.08.017 28888904

15. Ruangsomboon P, Chareancholvanich K, Harnroongroj T, Pornrattanamaneewong C. Survivorship of medial opening wedge high tibial osteotomy in the elderly: two to ten years of follow up. Int Orthop. 2017;41: 2045–2052. doi: 10.1007/s00264-017-3517-z 28577035

16. Morelanjd JR, Bassett LW, Hanker GJ. Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am. 1987;69: 745–749. 3597474

17. Bignotti E, Calza S, Tassi RA, Zanotti L, Bandiera E, Sartori E, et al. Identification of stably expressed reference small non-coding RNAs for microRNA quantification in high-grade serous ovarian carcinoma tissues. J Cell Mol Med. 2016;20: 2341–2348. doi: 10.1111/jcmm.12927 27419385

18. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013;21: 1553–1561. doi: 10.1007/s00167-012-2169-1 22893268

19. Lyng MB, Kodahl AR, Binder H, Ditzel HJ. Prospective validation of a blood-based 9-miRNA profile for early detection of breast cancer in a cohort of women examined by clinical mammography. Mol Oncol. 2016;10: 1621–1626. doi: 10.1016/j.molonc.2016.10.004 27839676

20. Murata K, Furu M, Yoshitomi H, Ishikawa M, Shibuya H, Hashimoto M, et al. Comprehensive microRNAs analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS One. 2013;8: e69118. doi: 10.1371/journal.pone.0069118 23874885

21. Zhu J, Zeng Y, Li W, Qin H, Lei Z, Shen D, et al. CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer. Mol Cancer. 2017;16: 34. doi: 10.1186/s12943-017-0591-1 28158983

22. Liu YC, Park YR, Kim SL, Lee ST, Kim SW. MicroRNA-30a inhibits colorectal cancer metastasis through down-regulation of type I insulin-like growth factor receptor. Dig Dis Sci. 2017;62: 3040–3049. doi: 10.1007/s10620-017-4763-z 28932920

23. Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18: 457–468. doi: 10.1002/ejhf.495 26869172

24. Maciejak A, Kostarska-Srokosz E, Gierlak W, Dluzniewski M, Kuch M, Marchel M, et al. Circulating miR-30a-5p as a prognostic biomarker of left ventricular dysfunction after acute myocardial infarction. Sci Rep. 2018;8: 9883.24.

25. Caserta S, Kern F, Cohen J, Drage S, Newbury SF, Llewelyn MJ. Circulating plasma microRNAs can differentiate human sepsis and systemic inflammatory response syndrome (SIRS). Sci Rep. 2016;6: 28006. doi: 10.1038/srep28006 27320175

26. Caserta S, Mengozzi M, Kern F, Newbury SF, Ghezzi P, Llewelyn MJ. Severity of systemic inflammatory response syndrome affects the blood levels of circulating inflammatory-relevant microRNAs. Front Immunol. 2018;8: 1977. doi: 10.3389/fimmu.2017.01977 29459855

27. Shen PF, Qu YX, Wang B, Xu JD, Wei K, Xie ZK, et al. miR-30a-5p promotes the apoptosis of chondrocytes in patients with osteoarthritis by targeting protein kinase B. Zhonghua Yi Xue Za Zhi. 2017;97: 3079–3084. doi: 10.3760/cma.j.issn.0376-2491.2017.39.008 29081152

28. Lv Q, Li Q, Zhang P, Jiang Y, Wang X, Wei Q, et al. Disorders of microRNAs in peripheral blood mononuclear cells: As novel biomarkers of ankylosing spondylitis and provocative therapeutic targets. Biomed Res Int. 2015;2015: 504208. doi: 10.1155/2015/504208 26273623

29. Huang J, Song G, Yin Z, Luo X, Ye Z. Elevated miR-29a expression is not correlated with disease activity index in PBMCs of patients with ankylosing spondylitis. Mod Rheumatol. 2014;24: 331–334. doi: 10.3109/14397595.2013.854077 24593209

30. Prajzlerova K, Grobelna K, Husakova M, Forejtova S, Jungel A, Gay S, et al. Association between circulating miRNAs and spinal involvement in patients with axial spondyloarthritis. PLoS One. 2017;12: e0185323. doi: 10.1371/journal.pone.0185323 28938006

31. Le LT, Swingler TE, Crowe N, Vincent TL, Barter MJ, Donell ST, et al. The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl). 2016;94: 583–596.

32. Cao JM, Li GZ, Han M, Xu HL, Huang KM. MiR-30c-5p suppresses migration, invasion and epithelial to mesenchymal transition of gastric cancer via targeting MTA1. Biomed Pharmacother. 2017;93: 554–560. doi: 10.1016/j.biopha.2017.06.084 28686969

33. Fredsoe J, Rasmussen AKI, Thomsen AR, Mouritzen P, Hoyer S, Borre M, et al. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur Urol Focus. 2017;S2405-4569: 30066–30064.

34. Vilahur G. Relevance of low miR-30c-5p levels in atherogenesis: a promising predictive biomarker and potential therapeutic target. Cardiovasc Res. 2017;113: 1536–1537. doi: 10.1093/cvr/cvx194 29036285

35. Ceolotto G, Giannella A, Albiero M, Kuppusamy M, Radu C, Simioni P, et al. miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovasc Res. 2017;113: 1627–1638. doi: 10.1093/cvr/cvx157 29016810

36. Song J, Kim D, Lee CH, Lee MS, Chun CH, Jin EJ. MicroRNA-488 regulates zinc transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis. J Biomed Sci. 2013;20: 31. doi: 10.1186/1423-0127-20-31 23688035

37. Kung LHW, Ravi V, Rowley L, Angelucci C, Fosang AJ, Bell KM, et al. Cartilage microRNA dysregulation during the onset and progression of mouse osteoarthritis is independent of aggrecanolysis and overlaps with candidates from end-stage human disease. Arthritis Rheumatol. 2018;70: 383–395. doi: 10.1002/art.40378 29145712

38. Li YH, Tavallaee G, Tokar T, Nakamura A, Sundararajan K, Weston A, et al. Identification of synovial fluid microRNA signature in knee osteoarthritis: differentiating early- and late-stage knee osteoarthritis. Osteoarthrits Cartilage. 2016;24: 1577–1586.

39. Yin CM, Suen WC, Lin S, Wu XM, Li G, Pan XH. Dysregulation of both miR-140-39 and miR-140-5p in synovial fluid correlate with osteoarthritis severity. Bone Joint Res. 2017;6: 612–618. doi: 10.1302/2046-3758.611.BJR-2017-0090.R1 29092816

40. Yang R, Zhang D, Yu K, Sun L, Yang J, Zhao C, et al. Detection of miR-22, miR-140 and bone morphogenetic proteins (BMP)-2 expression levels in synovial fluid of osteoarthritis patients before and after arthroscopic debridement. Med Sci Mont. 2018;24: 863–868.

41. Kersten P, White PJ, Tennant A. Is the pain visual analogue scale linear and responsive to change? An exploration using Rasch analysis. PLoS One. 2014;9: e99485. doi: 10.1371/journal.pone.0099485 24921952

Článek vyšel v časopise


2020 Číslo 1