If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus


Autoři: Alexander O. Frolov aff001;  Marina N. Malysheva aff001;  Anna I. Ganyukova aff001;  Viktoria V. Spodareva aff001;  Jana Králová aff002;  Vyacheslav Yurchenko aff002;  Alexei Y. Kostygov aff001
Působiště autorů: Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia aff001;  Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic aff002;  Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227832

Souhrn

Here we characterized the development of the trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus using light and electron microscopy. This parasite has been previously reported to occur in the host hemolymph, which is rather typical for dixenous trypanosomatids transmitted to a plant or vertebrate with insect's saliva. In addition, C. marginatus has an unusual organization of the intestine, which makes it refractory to microbial infections: two impassable segments isolate the anterior midgut portion responsible for digestion and absorption from the posterior one containing symbiotic bacteria. Our results refuted the possibility of hemolymph infection, but revealed that the refractory nature of the host provokes very aggressive behavior of the parasite and makes its life cycle more complex, reminiscent of that in some dixenous trypanosomatids. In the pre-barrier midgut portion, the epimastigotes of B. raabei attach to the epithelium and multiply similarly to regular insect trypanosomatids. However, when facing the impassable constricted region, the parasites rampage and either fiercely break through the isolating segments or attack the intestinal epithelium in front of the barrier. The cells of the latter group pass to the basal lamina and accumulate there, causing degradation of the epitheliocytes and thus helping the epimastigotes of the former group to advance posteriorly. In the symbiont-containing post-barrier midgut segment, the parasites either attach to bacterial cells and produce cyst-like amastigotes (CLAs) or infect enterocytes. In the rectum, all epimastigotes attach either to the cuticular lining or to each other and form CLAs. We argue that in addition to the specialized life cycle B. raabei possesses functional cell enhancements important either for the successful passage through the intestinal barriers (enlarged rostrum and well-developed Golgi complex) or as food reserves (vacuoles in the posterior end).

Klíčová slova:

Epithelium – Flagella – Gastrointestinal tract – Parasitic diseases – Rectum – Ribosomal RNA – Trypanosoma – Epimastigotes


Zdroje

1. Podlipaev SA. [Catalogue of world fauna of Trypanosomatidae (Protozoa)]. Krylov MV, editor. Leningrad: Zoologicheskii Institut AN SSSR; 1990. 178 p. (in Russian).

2. d'Avila-Levy CM, Boucinha C, Kostygov A, Santos HL, Morelli KA, Grybchuk-Ieremenko A, et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz. 2015;110(8):956–65. doi: 10.1590/0074-02760150253 26602872

3. Hoare CA. The trypanosomes of mammals. Oxford: Blackwell Scientific Publications; 1972. 768 p.

4. Bruschi F, Gradoni L. The leishmaniases: old neglected tropical diseases. Cham, Switzerland: Springer; 2018. 245 pp. p.

5. Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146(1):1–27. doi: 10.1017/S0031182018000951 29898792

6. Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myšková J, Grybchuk D, et al. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLOS Pathog. 2015;11(8):e1005127. doi: 10.1371/journal.ppat.1005127 26317207

7. Ghosh S, Banerjee P, Sarkar A, Datta S, Chatterjee M. Coinfection of Leptomonas seymouri and Leishmania donovani in Indian leishmaniasis. J Clin Microbiol. 2012;50(8):2774–8. doi: 10.1128/JCM.00966-12 22622439

8. Morio F, Reynes J, Dollet M, Pratlong F, Dedet JP, Ravel C. Isolation of a protozoan parasite genetically related to the insect trypanosomatid Herpetomonas samuelpessoai from a human immunodeficiency virus-positive patient. J Clin Microbiol. 2008;46(11):3845–7. doi: 10.1128/JCM.01098-08 18832132

9. Kostygov AY, Butenko A, Yurchenko V. On monoxenous trypanosomatids from lesions of immunocompetent patients with suspected cutaneous leishmaniasis in Iran. Trop Med Int Health. 2019;24(1):127–8. doi: 10.1111/tmi.13168 30307678

10. Kalantari M, Motazedian MH, Asgari Q, Soltani Z, Soltani A, Azizi K. Bionomics of phlebotomine sand flies species (Diptera: Psychodidae) and their natural infection with Leishmania and Crithidia in Fars province, southern Iran. J Parasit Dis. 2018;42(4):511–8. doi: 10.1007/s12639-018-1027-6 30538348

11. Maruyama SR, de Santana AKM, Takamiya NT, Takahashi TY, Rogerio LA, Oliveira CAB, et al. Non-Leishmania parasite in fatal visceral leishmaniasis-like disease, Brazil. Emerg Infect Dis. 2019;25(11):2088–92. doi: 10.3201/eid2511.181548 31625841

12. Ravoet J, Schwarz RS, Descamps T, Yanez O, Tozkar CO, Martin-Hernandez R, et al. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J Invertebr Pathol. 2015;130:21–7. doi: 10.1016/j.jip.2015.06.007 26146231

13. Yourth CP, Schmid-Hempel P. Serial passage of the parasite Crithidia bombi within a colony of its host, Bombus terrestris, reduces success in unrelated hosts. Proc R Soc Lond [Biol ]. 2006;273(1587):655–9. doi: 10.1098/rspb.2005.3371 16608683

14. Alves JM, Klein CC, da Silva FM, Costa-Martins AG, Serrano MG, Buck GA, et al. Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol Biol. 2013;13:190. doi: 10.1186/1471-2148-13-190 24015778

15. Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, et al. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist. 2014;165(6):825–38. doi: 10.1016/j.protis.2014.09.002 25460233

16. Motta MC, Martins AC, de Souza SS, Catta-Preta CM, Silva R, Klein CC, et al. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLOS One. 2013;8(4):e60209. doi: 10.1371/journal.pone.0060209 23560078

17. Kostygov AY, Butenko A, Nenarokova A, Tashyreva D, Flegontov P, Lukeš J, et al. Genome of Ca. Pandoraea novymonadis, an endosymbiotic bacterium of the trypanosomatid Novymonas esmeraldas. Front Microbiol. 2017;8:1940. doi: 10.3389/fmicb.2017.01940 29046673

18. Kostygov AY, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA, Votýpka J, et al. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. mBio. 2016;7(2):e01985. doi: 10.1128/mBio.01985-15 26980834

19. Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol. 2016;63(5):657–78. doi: 10.1111/jeu.12315 27009761

20. Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, et al. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6:23704. doi: 10.1038/srep23704 27021793

21. Flegontov P, Votýpka J, Skalický T, Logacheva MD, Penin AA, Tanifuji G, et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23(18):1787–93. doi: 10.1016/j.cub.2013.07.045 24012313

22. Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26(2):161–72. doi: 10.1016/j.cub.2015.11.055 26725202

23. Kraeva N, Horáková E, Kostygov A, Kořený L, Butenko A, Yurchenko V, et al. Catalase in Leishmaniinae: With me or against me? Infect Genet Evol. 2017;50:121–7. doi: 10.1016/j.meegid.2016.06.054 27381333

24. Záhonová K, Kostygov AY, Ševčíková T, Yurchenko V, Eliáš M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol. 2016;26(17):2364–9. doi: 10.1016/j.cub.2016.06.064 27593378

25. Bianchi C, Kostygov AY, Kraeva N, Záhonová K, Horáková E, Sobotka R, et al. An enigmatic catalase of Blastocrithidia. Mol Biochem Parasitol. 2019;232:111199. doi: 10.1016/j.molbiopara.2019.111199 31276694

26. Frolov AO, Malysheva MN, Kostygov AY. [Transformations of life cycles in the evolutionary history of trypanosomatids. Macrotransformations]. Parazitologiia. 2015;49(4):233–56. (in Russian). 26827484

27. Schaub GA, Lösch P. Parasite/host-interrelationships of the trypanosomatids Trypanosoma cruzi and Blastocrithidia triatomae and the reduviid bug Triatoma infestans: influence of starvation of the bug. Ann Trop Med Parasitol. 1989;83(3):215–23. doi: 10.1080/00034983.1989.11812335 2513786

28. Schaub GA, Böker CA, Jensen C, Reduth D. Cannibalism and coprophagy are modes of transmission of Blastocrithidia triatomae (Trypanosomatidae) between triatomines. J Protozool. 1989;36(2):171–5. doi: 10.1111/j.1550-7408.1989.tb01067.x 2498511

29. Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY. Life cycle of Blastocrithidia papi sp. n. (Kinetoplastea, Trypanosomatidae) in Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Eur J Protistol. 2017;57:85–98. doi: 10.1016/j.ejop.2016.10.007 28073072

30. Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY. Obligate development of Blastocrithidia papi (Trypanosomatidae) in the Malpighian tubules of Pyrrhocoris apterus (Hemiptera) and coordination of host-parasite life cycles. PLOS One. 2018;13(9):e0204467. doi: 10.1371/journal.pone.0204467 30261003

31. Schaub GA. Pathogenicity of trypanosomatids on insects. Parasitol Today. 1994;10(12):463–8. doi: 10.1016/0169-4758(94)90155-4 15275511

32. Schaub GA, Jensen C. Developmental time and mortality of the reduviid bug Triatoma infestans with differential exposure to coprophagic infections with Blastocrithidia triatomae (Trypanosomatidae). J Invertebr Pathol. 1990;55(1):17–27. doi: 10.1016/0022-2011(90)90027-4 2105356

33. Jensen C, Schaub GA, Molyneux DH. The effect of Blastocrithidia triatomae (Trypanosomatidae) on the midgut of the reduviid bug Triatoma infestans. Parasitology. 1990;100(1):1–9. doi: 10.1017/S0031182000060054 2107501

34. Schaub GA, Schnitker A. Influence of Blastocrithidia triatomae (Trypanosomatidae) on the reduviid bug Triatoma infestans: alterations in the Malpighian tubules. Parasitol Res. 1988;75(2):88–97. doi: 10.1007/bf00932706 3148931

35. Lipa JJ. Blastocrithidia raabei sp. n., a flagellate parasite of Mesocerus marginatus L. (Hemiptera: Coreidae) Acta Protozool. 1966;4(3):19–23.

36. Podlipaev S. [Blastocrithidia raabei rostrata subsp. n. (Mastigophora, Trypanosomamonadida) parasite of a bug Coreus marginatus]. Zool Zh 1988;67:1407–11. (in Russian).

37. Frolov AO, Malysheva MN, Kostygov AY. [Transformations of life cycles in the evolutionary history of Trypanosomatidae: endotransformations and aberrations] Parazitologiia. 2016;50(2):97–113. (in Russian). 28777525

38. Ohbayashi T, Takeshita K, Kitagawa W, Nikoh N, Koga R, Meng XY, et al. Insect's intestinal organ for symbiont sorting. Proc Natl Acad Sci U S A. 2015;112(37):E5179–88. doi: 10.1073/pnas.1511454112 26324935

39. Frolov AO, Malysheva MN, Yurchenko V, Kostygov AY. Back to monoxeny: Phytomonas nordicus descended from dixenous plant parasites. Eur J Protistol. 2016;52:1–10. doi: 10.1016/j.ejop.2015.08.002 26555733

40. Podlipaev SA, Frolov AO. [Description and laboratory cultivation of Blastocrithidia miridarum sp. n. (Mastigophora, Trypanosomatidae)]. Parazitologiia. 1987;21(4):545–52. (in Russian).

41. Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, et al. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol. 2016;63(2):198–209. doi: 10.1111/jeu.12268 26352484

42. Maslov DA, Lukeš J, Jirků M, Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol. 1996;75(2):197–205. doi: 10.1016/0166-6851(95)02526-x 8992318

43. Losev A, Grybchuk-Ieremenko A, Kostygov AY, Lukeš J, Yurchenko V. Host specificity, pathogenicity, and mixed infections of trypanoplasms from freshwater fishes. Parasitol Res. 2015;114(3):1071–8. doi: 10.1007/s00436-014-4277-y 25544706

44. Gerasimov ES, Kostygov AY, Yan S, Kolesnikov AA. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur J Protistol. 2012;48(3):185–93. doi: 10.1016/j.ejop.2011.09.002 22014411

45. Westenberger SJ, Sturm NR, Yanega D, Podlipaev SA, Zeledon R, Campbell DA, et al. Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology. 2004;129(Pt 5):537–47. doi: 10.1017/s003118200400592x 15552399

46. Gutiérrez G, Chistyakova LV, Villalobo E, Kostygov AY, Frolov AO. Identification of Pelomyxa palustris endosymbionts. Protist. 2017;168(4):408–24. doi: 10.1016/j.protis.2017.06.001 28755578

47. Kostygov AY, Frolov AO. [Leptomonas jaculum (Leger, 1902) Woodcock 1914: a leptomonas or a blastocrithidia?]. Parazitologiia. 2007;41(2):126–36. (in Russian). 17578245

48. Votýpka J, Klepetková H, Jirků M, Kment P, Lukeš J. Phylogenetic relationships of trypanosomatids parasitising true bugs (Insecta: Heteroptera) in sub-Saharan Africa. Int J Parasitol. 2012;42(5):489–500. doi: 10.1016/j.ijpara.2012.03.007 22537738

49. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. doi: 10.1093/molbev/mst010 23329690

50. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. doi: 10.1093/molbev/msu300 25371430

51. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. doi: 10.1038/nmeth.4285 28481363

52. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42. doi: 10.1093/sysbio/sys029 22357727

53. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–8.

54. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9. doi: 10.1093/molbev/msy096 29722887

55. Frolov AO, Malysheva MN, Ganyukova AI, Spodareva VV, Yurchenko V, Kostygov AY. Development of Phytomonas lipae sp. n. (Kinetoplastea: Trypanosomatidae) in the true bug Coreus marginatus (Heteroptera: Coreidae) and insights into the evolution of life cycles in the genus Phytomonas. PLOS One. 2019;14(4):e0214484. doi: 10.1371/journal.pone.0214484 30943229

56. Kralova J, Grybchuk-Ieremenko A, Votypka J, Novotny V, Kment P, Lukes J, et al. Insect trypanosomatids in Papua New Guinea: high endemism and diversity. Int J Parasitol. 2019;49(13–14):1075–86. doi: 10.1016/j.ijpara.2019.09.004 31734337

57. Kuechler SM, Matsuura Y, Dettner K, Kikuchi Y. Phylogenetically diverse Burkholderia associated with midgut crypts of spurge bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae). Microbes Environ. 2016;31(2):145–53. doi: 10.1264/jsme2.ME16042 27265344

58. Smirnoff WA, Lipa JJ. Herpetomonas swainei sp. n., a new flagellate parasite of Neodiprion swainei (Hymenoptera: Tenthredinidae). J Invertebr Pathol. 1970;16(2):187–95. doi: 10.1016/0022-2011(70)90059-5

59. Frolov AO, Skarlato SO. [Light- and electron microscopical study of Leptomonas pyrrhocoris Z. (Kinetoplastida, Trypanosomatidae)]. Parazitologiia. 1987;21(1):3–9. (in Russian).

60. Caicedo AM, Gallego G, Munoz JE, Suarez H, Torres AG, Carvajal H, et al. Morphological and molecular description of Blastocrithidia cyrtomeni sp. nov. (Kinetoplastea: Trypanosomatidae) associated with Cyrtomenus bergi Froeschner (Hemiptera: Cydnidae) from Colombia. Mem Inst Oswaldo Cruz. 2011;106(3):301–7. doi: 10.1590/s0074-02762011000300008 21655817

61. Lipa JJ, Carl KP, Valentine EW. Blastocrithidia caliroae sp.n., a flagellate parasite of Caliroa cerasi (L.) (Hymenoptera: Tenthredinidae) and notes on its epizootics in host field populations. Acta Protozool. 1977;16(2):121–30.

62. Kikuchi Y, Hosokawa T, Fukatsu T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 2011;5(3):446–60. doi: 10.1038/ismej.2010.150 20882057

63. Frolov AO, Skarlato SO. [Fine structure and mechanisms of adaptation of lower trypanosomatids in Hemiptera]. Tsitologyia. 1995;37(7):539–60. (in Russian).

64. Schaub GA. The effects of trypanosomatids on insects. Adv Parasitol. 1992;31:255–319. doi: 10.1016/s0065-308x(08)60023-8 1496928

65. Tieszen KL, Molyneux DH, Abdel-Hafez SK. Host—parasite relationships of Blastocrithidia familiaris in Lygaeus pandurus Scop. (Hemiptera: Lygaeidae). Parasitology. 1986;92(1):1–12. doi: 10.1017/s003118200006340x

66. Weisse S, Heddergott N, Heydt M, Pflasterer D, Maier T, Haraszti T, et al. A quantitative 3D motility analysis of Trypanosoma brucei by use of digital in-line holographic microscopy. PLOS One. 2012;7(5):e37296. doi: 10.1371/journal.pone.0037296 22629379

67. Rodriguez JA, Lopez MA, Thayer MC, Zhao Y, Oberholzer M, Chang DD, et al. Propulsion of African trypanosomes is driven by bihelical waves with alternating chirality separated by kinks. Proc Natl Acad Sci U S A. 2009;106(46):19322–7. doi: 10.1073/pnas.0907001106 19880745

68. Landfear SM, Ignatushchenko M. The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol. 2001;115(1):1–17. doi: 10.1016/s0166-6851(01)00262-6 11377735

69. Ellis DS, Evans DA, Stamford S. The penetration of the salivary glands of Rhodnius prolixus by Trypanosoma rangeli. Z Parasitenkd. 1980;62(1):63–74. doi: 10.1007/bf00925367 6994382

70. Freymuller E, Milder R, Jankevicius JV, Jankevicius SI, Camargo EP. Ultrastructural studies on the trypanosomatid Phytomonas serpens in the salivary glands of a phytophagous hemipteran. J Protozool. 1990;37(3):225–9. doi: 10.1111/j.1550-7408.1990.tb01132.x

71. Hecker H, Schwarzenbach M, Rudin W. Development and interactions of Trypanosoma rangeli in and with the reduviid bug Rhodnius prolixus. Parasitol Res. 1990;76(4):311–8. doi: 10.1007/bf00928185 2186407

72. Frolov AO, Malysheva MN. [Description of Phytomonas nordicus sp. n. (Trypanosomatidae) from the predatory bug Troilus luridus (Hemiptera, Pentatomidae)]. Parazitologiia. 1993;27(3):227–32. (in Russian).

73. Volf P, Hajmova M, Sadlova J, Votypka J. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int J Parasitol. 2004;34(11):1221–7. doi: 10.1016/j.ijpara.2004.07.010 15491584

74. Tieszen KL, Molyneux DH. Morphology and host-parasite relationships of Crithidia flexonema (Trypanosomatidae) in the hindgut and Malpighian tubules of Gerris odontogaster (Hemiptera, Gerridae). J Parasitol. 1989;75(3):441–8. doi: 10.2307/3282603

75. Seward EA, Votýpka J, Kment P, Lukeš J, Kelly S. Description of Phytomonas oxycareni n. sp. from the salivary glands of Oxycarenus lavaterae. Protist. 2017;168(1):71–9. doi: 10.1016/j.protis.2016.11.002 28043008

76. Cunha-e-Silva N, Sant'Anna C, Pereira MG, Porto-Carreiro I, Jeovanio AL, de Souza W. Reservosomes: multipurpose organelles? Parasitol Res. 2006;99(4):325–7. doi: 10.1007/s00436-006-0190-3 16794853

77. Peng PL-M, Wallace FG. The cysts of Blastocrithidia triatomae Cerisola et al., 1971. J Protozool. 1982;29(3):464–67. doi: 10.1111/j.1550-7408.1982.tb05434.x

78. Tieszen KL, Molyneux DH, Abdel-Hafez SK. Ultrastructure of cyst formation in Blastocrithidia familiaris in Lygaeus pandurus (Hemiptera: Lygaeidae). Z Parasitenk. 1985;71:179–88. doi: 10.1007/BF00926268

79. Schaub GA, Böker CA. Scanning electron microscopic studies of Blastocrithidia triatomae (Trypanosomatidae) in the rectum of Triatoma infestans (Reduviidae). J Protozool. 1986;33(2):266–70. doi: 10.1111/j.1550-7408.1986.tb05604.x

80. Maslov DA, Yurchenko VY, Jirků M, Lukeš J. Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol. 2010;57(2):177–88. doi: 10.1111/j.1550-7408.2009.00464.x 20113381

81. Lauge G, Nishioka RS. Ultrastructural study of the relations between Leptomonas oncopelti (Noguchi and Tilden), Protozoa Trypanosomatidae, and the rectal wall of adults of Oncopeltus fasciatus Dallas, Hemiptera Lygaeidae. J Morphol. 1977;154(2):291–305. doi: 10.1002/jmor.1051540207 30253638

82. Molyneux DH, Croft SL, Lavin DR. Studies on the host-parasite relationships of Leptomonas species (Protozoa: Kinetoplastida) of Siphonaptera. J Natl Hist. 1981;15(3):395–406. doi: 10.1080/00222938100770301

83. Tieszen KL, Molyneux DH, Abdelhafez SK. Host-parasite relationships and cysts of Leptomonas lygaei (Trypanosomatidae) in Lygaeus pandurus (Hemiptera, Lygaeidae). Parasitology. 1989;98:395–400. doi: 10.1017/S0031182000061473

84. Frolov AO, Skarlato SO. [Localization and modes of anchoring of the flagellates Blastocrithidia miridarum in the intestine of the bugs Adelphocoris quadripunctatus]. Parazitologiia. 1988;22(6):481–7.

85. Skalický T, Dobáková E, Wheeler RJ, Tesařová M, Flegontov P, Jirsová D, et al. Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proc Natl Acad Sci U S A. 2017;114(44):11757–62. doi: 10.1073/pnas.1712311114 29078369

86. Vickerman K, Tetley L. Flagellar surfaces of parasitic protozoa and their role in attachment. In: Bloodgood RA, editor. Ciliary and Flagellar Membranes: Springer, Boston, MA; 1990. p. 267–304.

87. Beattie P, Gull K. Cytoskeletal architecture and components involved in the attachment of Trypanosoma congolense epimastigotes. Parasitology. 1997;115 (Pt 1):47–55. doi: 10.1017/s0031182097001042 9280895

88. Vickerman K. The mode of attachment of Trypanosoma vivax in the proboscis of the tsetse fly Glossina fuscipes: an ultrastructural study of the epimastigote stage of the trypanosome. J Protozool. 1973;20(3):394–404. doi: 10.1111/j.1550-7408.1973.tb00909.x 4731343

89. Tetley L, Vickerman K. Differentiation in Trypanosoma brucei: host-parasite cell junctions and their persistence during acquisition of the variable antigen coat. J Cell Sci. 1985;74:1–19. 4030903


Článek vyšel v časopise

PLOS One


2020 Číslo 1