Embryonic thermal manipulation has short and long-term effects on the development and the physiology of the Japanese quail

Autoři: Anaïs Vitorino Carvalho aff001;  Christelle Hennequet-Antier aff001;  Sabine Crochet aff001;  Thierry Bordeau aff001;  Nathalie Couroussé aff001;  Estelle Cailleau-Audouin aff001;  Pascal Chartrin aff001;  Veerle M. Darras aff002;  Tatiana Zerjal aff003;  Anne Collin aff001;  Vincent Coustham aff001
Působiště autorů: BOA, INRAE, Université de Tours, Nouzilly, France aff001;  Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Leuven, Belgium aff002;  GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227700


In vertebrates, the embryonic environment is known to affect the development and the health of individuals. In broiler chickens, the thermal-manipulation (TM) of eggs during the incubation period was shown to improve heat tolerance at slaughter age (35 days of age) in association with several modifications at the molecular, metabolic and physiological levels. However, little is known about the Japanese quail (Coturnix japonica), a closely related avian species widely used as a laboratory animal model and farmed for its meat and eggs. Here we developed and characterized a TM procedure (39.5°C and 65% relative humidity, 12 h/d, from days 0 to 13 of incubation) in quails by analyzing its short and long-term effects on zootechnical, physiological and metabolic parameters. Heat-tolerance was tested by a heat challenge (36°C for 7h) at 35 days of age. TM significantly reduced the hatching rate of the animals and increased mortality during the first four weeks of life. At hatching, TM animals were heavier than controls, but lighter at 25 days of age for both sexes. Thirty-five days after hatching, TM decreased the surface temperature of the shank in females, suggesting a modulation of the blood flow to maintain the internal temperature. TM also increased blood partial pressure and oxygen saturation percentage at 35 days of age in females, suggesting a long-term modulation of the respiration physiology. Quails physiologically responded to the heat challenge, with a modification of several hematologic and metabolic parameters, including an increase in plasma corticosterone concentration. Several physiological parameters such as beak surface temperature and blood sodium concentration revealed that TM birds responded differently to the heat challenge compared to controls. Altogether, this first comprehensive characterization of TM in Japanese quail showed durable effects that may affect the response of TM quails to heat.

Klíčová slova:

Birds – Blood – Blood plasma – Chickens – Quails – Surface temperature – Thermal stresses – Bird physiology


1. Sandra O, Mansouri-Attia N, Lea RG. Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success. Reprod Fertil Dev. 2011;24(1):68–79. doi: 10.1071/RD11908 22394719

2. Loyau T, Bedrani L, Berri C, Metayer-Coustard S, Praud C, Coustham V, et al. Cyclic variations in incubation conditions induce adaptive responses to later heat exposure in chickens: a review. Animal. 2015;9(1):76–85. doi: 10.1017/S1751731114001931 25118598

3. Archer GS, Mench JA. Exposing avian embryos to light affects post-hatch anti-predator fear responses. Appl Anim Behav Sci. 2017;186:80–4.

4. Meillère A, Brischoux F, Angelier F. Impact of chronic noise exposure on antipredator behavior: An experiment in breeding house sparrows. Behav Ecol. 2015;26(2):569–77.

5. Lara LJ, Rostagno MH. Impact of Heat Stress on Poultry Production. Anim. 2013;3(2):356–69.

6. Loyau T, Collin A, Yenisey C, Crochet S, Siegel PB, Aksit M, et al. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens. Poult Sci. 2014;93(8):2078–86. doi: 10.3382/ps.2014-03881 24894528

7. Loyau T, Metayer-Coustard S, Berri C, Crochet S, Cailleau-Audouin E, Sannier M, et al. Thermal manipulation during embryogenesis has long-term effects on muscle and liver metabolism in fast-growing chickens. PLoS One. 2014;9(9):e105339. doi: 10.1371/journal.pone.0105339 25180913

8. Moraes VMB, Malheiros RD, Bruggeman V, Collin A, Tona K, Van As P, et al. Effect of thermal conditioning during embryonic development on aspects of physiological responses of broilers to heat stress. J Therm Biol. 2003 Feb;28(2):133–40.

9. Loyau T, Hennequet-Antier C, Coustham V, Berri C, Leduc M, Crochet S, et al. Thermal manipulation of the chicken embryo triggers differential gene expression in response to a later heat challenge. BMC Genomics. 2016;17:329. doi: 10.1186/s12864-016-2661-y 27142519

10. Loyau T, Berri C, Bedrani L, Metayer-Coustard S, Praud C, Duclos MJ, et al. Thermal manipulation of the embryo modifies the physiology and body composition of broiler chickens reared in floor pens without affecting breast meat processing quality. J Anim Sci. 2013;91(8):3674–85. doi: 10.2527/jas.2013-6445 23736053

11. Collin A, Berri C, Tesseraud S, Rodon FE, Skiba-Cassy S, Crochet S, et al. Effects of thermal manipulation during early and late embryogenesis on thermotolerance and breast muscle characteristics in broiler chickens. Poult Sci. 2007;86(5):795–800. doi: 10.1093/ps/86.5.795 17435011

12. Collin A, Picard M, Yahav S. The effect of duration of thermal manipulation during broiler chick embryogenesis on body weight and body temperature of post-hatched chicks. Anim Res. 2005;54(2):105–11.

13. Piestun Y, Harel M, Barak M, Yahav S, Halevy O. Thermal manipulations in late-term chick embryos have immediate and longer term effects on myoblast proliferation and skeletal muscle hypertrophy. J Appl Physiol. 2009;106(1):233–40. doi: 10.1152/japplphysiol.91090.2008 19023019

14. Piestun Y, Shinder D, Ruzal M, Halevy O, Yahav S. The effect of thermal manipulations during the development of the thyroid and adrenal axes on in-hatch and post-hatch thermoregulation. J Therm Biol. 2008;33(7):413–8.

15. Yahav S, Collin A, Shinder D, Picard M. Thermal manipulations during broiler chick embryogenesis: effects of timing and temperature. Poult Sci. 2004;83(12):1959–1963. doi: 10.1093/ps/83.12.1959 15615007

16. Nyuiadzi D, Travel A, Meda B, Berri C, Guilloteau LA, Coustham V, et al. Effect of low incubation temperature and low ambient temperature until 21 days of age on performance and body temperature in fast-growing chickens. Poult Sci. 2017;96(12):4261–9. doi: 10.3382/ps/pex264 29053847

17. Piestun Y, Zimmerman I, Yahav S. Thermal manipulations of Turkey embryos: The effect on thermoregulation and development during embryogenesis. Poult Sci. 2015;94(2):273–80. doi: 10.3382/ps/peu047 25630674

18. Maltby V, Somaiya A, French NA, Stickland NC. In ovo temperature manipulation influences post-hatch muscle growth in the turkey. Br Poult Sci. 2004;45(4):491–8. doi: 10.1080/00071660412331286190 15484723

19. Wang G, Liu J, Xiang S, Yan X, Li Q, Cui C, et al. Influence of in ovo thermal manipulation on lipid metabolism in embryonic duck liver. J Therm Biol. 2014;43(1):40–5.

20. Liu H, Liu J, Yan X, Li Q, Zhao Y, Wang Y, et al. Impact of thermal stress during incubation on gene expression in embryonic muscle of Peking ducks (Anasplatyrhynchos domestica). J Therm Biol. 2015;53:80–9. doi: 10.1016/j.jtherbio.2015.08.013 26590459

21. Li X, Qiu J, Liu H, Wang Y, Hu J, Gan X, et al. Long-term thermal manipulation in the late incubation period can inhibit breast muscle development by activating endoplasmic reticulum stress in duck (Anasplatyrhynchos domestica). Journal of Thermal Biology. 2017;37–45.

22. Piestun Y, Shinder D, Ruzal M, Halevy O, Brake J, Yahav S. Thermal manipulations during broiler embryogenesis: effect on the acquisition of thermotolerance. Poult Sci. 2008;87(8):1516–25. doi: 10.3382/ps.2008-00030 18648043

23. David S, Vitorino Carvalho A, Gimonnet C, Brionne A, Hennequet-Antier C, Piégu B, et al. Thermal Manipulation During Embryogenesis Impacts H3K4me3 and H3K27me3 Histone Marks in Chicken Hypothalamus. Front Genet.

24. Bartholomew GA, Dawson WR. Body Temperatures in California and Gambel’s Quail. Auk. 2012;75(2):150–6.

25. Loyau T, Zerjal T, Rodenburg TB, Fablet J, Tixier-Boichard M, Pinard-Van Der Laan MH, et al. Heritability of body surface temperature in hens estimated by infrared thermography at normal or hot temperatures and genetic correlations with egg and feather quality. Animal. 2016;10(10):1594–601. doi: 10.1017/S1751731116000616 27095244

26. Scott TR, Satterlee DG, Jacobs-Perry LA. Circulating corticosterone responses of feed and water deprived broilers and Japanese quail. Poult Sci. 1983;62(2):290–7. doi: 10.3382/ps.0620290 6835905

27. Kayang BB, Fillon V, Inoue-Murayama M, Miwa M, Leroux S, Fève K, et al. Integrated maps in quali (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence. BMC Genomics. 2006;7:101. doi: 10.1186/1471-2164-7-101 16669996

28. Kawahara-Miki R, Sano S, Nunome M, Shimmura T, Kuwayama T, Takahashi S, et al. Next-generation sequencing reveals genomic features in the Japanese quail. Genomics. 2013;101(6):345–53. doi: 10.1016/j.ygeno.2013.03.006 23557672

29. Huss D, Poynter G, Lansford R. Japanese quail (Coturnix japonica) as a laboratory animal model. Vol. 37, Lab Animal. 2008. p. 513–9. doi: 10.1038/laban1108-513 18948991

30. Vitorino Carvalho A, Couroussé N, Crochet S, Coustham V. Identification of Reference Genes for Quantitative Gene Expression Studies in Three Tissues of Japanese Quail. Genes (Basel). 2019 Mar 4;10(3):197.

31. Alkan S, Karsli T, Karabag K, Galic A, Balcioglu MS. The effects of thermal manipulation during early and late embryogenesis on hatchability, hatching weight and body weight in Japanese quails (Coturnix coturnix japonica). Arch Tierzucht. 2013;56(78):789–96.

32. El-Daly EF, El-Wardany I, El-Gawad AHA, Hemid AEA, El-Azeem NAA. Physiological, Biochemical and Metabolic Responses of Japanese Quail (Coturnix coturnix japonica) as Affected by Early Heat Stress and Dietary Treatment. Iran J Appl Anim Sci. 2013;3(1):207–16.

33. Abd El-Gawad AH, Hemid A, El-Wardany I, El-Daly E., Abd El-Azeem N. Alleviating the Effect of Some Environmental Stress Factors on Productive Performance in Japanese Quail 1. Growth Performance. World J Agric Sci. 2008;4(5):605–11.

34. Hemid A, Abd El-Gawad AH, El-Wardany I, El-Dalyand EF, Abd El-Azeem NA. Alleviating Effect of Some Environmental Stress Factors on Productive Performance of Laying Quail 2. Laying Performance. World J Agric Sci. 2010;6(5):517–24.

35. Tzschentke B. Monitoring the development of thermoregulation in poultry embryos and its influence by incubation temperature. Comput Electron Agric. 2008;64(1):61–71.

36. Weathers WW, Schoenbaechler DC. Contribution of gular flutter to evaporative cooling in Japanese Quail. J Appl Physiol. 1976;40:521–4. doi: 10.1152/jappl.1976.40.4.521 931873

37. Marder J, Ben-Asher J. Cutaneous water evaporation—Its significance in heat-stressed birds. Comp Biochem Physiol—Part A Physiol. 1983;75(3):425–31.

38. Recoquillay J, Pitel F, Arnould C, Leroux S, Dehais P, Moreno C, et al. A medium density genetic map and QTL for behavioral and production traits in Japanese quail. BMC Genomics. 2015;16:10. doi: 10.1186/s12864-014-1210-9 25609057

39. Ainsworth SJ, Stanley RL, Evans DJ. Developmental stages of the Japanese quail. J Anat. 2010;216(1):3–15. doi: 10.1111/j.1469-7580.2009.01173.x 19929907

40. Sellier N, Brillard JP, Dupuy V, Bakst MR. Comparative staging of embryo development in chicken, turkey, duck, goose, guinea fowl, and Japanese quail assessed from five hours after fertilization through seventy-two hours of incubation. J Appl Poult Res. 2006;15(2):219–28.

41. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88(1):49–92. 24539719

42. Willemsen H, Kamers B, Dahlke F, Han H, Song Z, Pirsaraei ZA, et al. High and low-temperature manipulation during late incubation: Effects on embryonic development, the hatching process, and metabolism in broilers. Poult Sci. 2010;89(12):2678–90. doi: 10.3382/ps.2010-00853 21076107

43. Woodard AE, Mather FB. Effect of photoperiod on cyclic patterns of body temperature in the quail. Vol. 203, Nature. 1964. p. 422–3. doi: 10.1038/203422a0 14197399

44. Kovács K, Péczely P. Phase shifts in circadian rhythmicity of total, free corticosterone and transcortine plasma levels in hypothyroid male Japanese quails. Gen Comp Endocrinol. 1983;50(3):483–9. doi: 10.1016/0016-6480(83)90270-8 6884753

45. Cogburn LA, Freeman RM. Response surface of daily thyroid hormone rhythms in young chickens exposed to constant ambient temperature. Gen Comp Endocrinol. 1987;68(1):113–23. doi: 10.1016/0016-6480(87)90066-9 3666417

46. Decuypere E, Kühn ER. Effect of fasting and feeding time on circadian rhythms of serum thyroid hormone concentrations, glucose, liver monodeiodinase activity and rectal temperature in growing chickens. Domest Anim Endocrinol. 1984;1(3):251–62.

47. Leroux S, Gourichon D, Leterrier C, Labrune Y, Coustham V, Riviere S, et al. Embryonic environment and transgenerational effects in quail. Genet Sel Evol. 2017;49(1):14. doi: 10.1186/s12711-017-0292-7 28125975

48. Darras VM, Kotanen SP, Geris KL, Berghman LR, Kühn ER. Plasma thyroid hormone levels and iodothyronine deiodinase activity following an acute glucocorticoid challenge in embryonic compared with posthatch chickens. Gen Comp Endocrinol. 1996;104(2):203–12. doi: 10.1006/gcen.1996.0163 8930611

49. Lapenna D, Ciofani G, Pierdomenico SD, Giamberardino MA, Cuccurullo F. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma. Free Radic Biol Med. 2001;31(3):331–5. doi: 10.1016/s0891-5849(01)00584-6 11461770

50. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2017.

51. Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. Vol. 53, Journal of Chemical Information and Modeling. 2013. 1689–1699 p. doi: 10.1021/ci400128m

52. Lenth R V. Least-Squares Means: The R Package lsmeans. J Stat Softw. 2016;69(1):1–33.

53. Piepho HP. An algorithm for a letter-based representation of all-pairwise comparisons. J Comput Graph Stat. 2004;13(2):456–66.

54. Pinheiro JC, Bates DM, Pinheiro JC, Batest DM. Interface Foundation of America Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model. Source J Comput Graph Stat. 1995;4(1):12–35.

55. José CP. Model Building for Nonlinear Mixed-Effects Models. Am Stat Assoc 1994 Proc Biopharm Sect. 1994;1–8.

56. Yahav S, Hurwitz S. Induction of thermotolerance in male broiler chickens by temperature conditioning at an early age. Poult Sci. 1996;75(3):402–406. doi: 10.3382/ps.0750402 8778736

57. Khalil HA, Gerken M, Hassanein AM, Mady ME. Behavioural Responses of Two Japanese Quail Lines Differing in Body Weight To Heat Stress. Egypt J Anim Prod. 2012;151–8.

58. Alagawany M.; Abd El-Hack, M.; Patra, A. M. F. Heat stress: Effects on productive and reproductive performance of quail. Worlds Poult Sci J. 2017;74(4):747–56.

59. Elahi S, Gu S, Thrane L, Rollins AM, Jenkins MW. Complex regression Doppler optical coherence tomography. J Biomed Opt. 2018;23(04):1.

60. Ozbey O, Yildiz N, Aysondu M., Ozmen O. The effects of high temperature on blood serum parameters and the egg productivity characteristics of Japanese quails (Coturnix coturnix japonica). Int J Poult Sci. 2004;3:485–9.

61. Dacke CG, Arkle S, Cook DJ, Wormstone IM, Jones S, Zaidi M, et al. Medullary bone and avian calcium regulation. J Exp Biol. 1993;184:63–88.

62. Ozcelik M, Ozbey O. The effect of the high environmental temperature on some blood parameters and the laying performance of Japanese quails with different body weights (short communication). Arch Anim Breed. 2004;47(1):93–8.

63. Huang C, Jiao H, Song Z, Zhao J, Wang X, Lin H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. J Anim Sci. 2015;93(5):2144–53. doi: 10.2527/jas.2014-8739 26020310

64. Al-Zghoul MB, Sukker H, Ababneh MM. Effect of thermal manipulation of broilers embryos on the response toheat-induced oxidative stress. Poult Sci. 2019;98(2):991–1001. doi: 10.3382/ps/pey379 30137537

65. Minvielle F. The future of Japanese quail for research and production. Worlds Poult Sci J. 2004;60(4):500–7.

66. Burse RL. Sex Differences in Human Thermoregulatory Response to Heat and Cold Stress. Hum Factors J Hum Factors Ergon Soc. 1979;

67. Borges SA, Fischer Da Silva AV, Majorka A, Hooge DM, Cummings KR. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult Sci. 2004;83(9):1551–8. doi: 10.1093/ps/83.9.1551 15384907

68. Baker LB, Ungaro CT, Sopeña BC, Nuccio RP, Reimel AJ, Carter JM, et al. Body map of regional vs. whole body sweating rate and sweat electrolyte concentrations in men and women during moderate exercise-heat stress. J Appl Physiol. 2018

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden