Aromatase deficiency in hematopoietic cells improves glucose tolerance in male mice through skeletal muscle-specific effects

Autoři: Katya B. Rubinow aff001;  Laura J. den Hartigh aff001;  Leela Goodspeed aff001;  Shari Wang aff001;  Orhan K. Oz aff002
Působiště autorů: Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States of America aff001;  Department of Radiology, University of Texas – Southwestern, Dallas, Texas, United States of America aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227830


Estrogens are important for maintaining metabolic health in males. However, the key sources of local estrogen production for regulating energy metabolism have not been fully defined. Immune cells exhibit aromatase activity and are resident in metabolic tissues. To determine the relative contribution of immune cell-derived estrogens for metabolic health in males, C57BL6/J mice underwent bone marrow transplant with marrow from either wild-type (WT(WT)) or aromatase-deficient (WT(ArKO)) donors. Body weight, body composition, and glucose and insulin tolerance were assessed over 24 weeks with mice maintained on a regular chow diet. No differences were found in insulin sensitivity between groups, but WT(ArKO) mice were more glucose tolerant than WT(WT) mice 20 weeks after transplant, suggestive of enhanced glucose disposal (AUCglucose 6061±3349 in WT(WT) mice versus 3406±1367 in WT(ArKO) mice, p = 0.01). Consistent with this, skeletal muscle from WT(ArKO) mice showed higher expression of the mitochondrial genes Ppargc1a (p = 0.03) and Nrf1 (p = 0.01), as well as glucose transporter type 4 (GLUT4, Scl2a4; p = 0.02). Skeletal muscle from WT(ArKO) mice had a lower concentration of 17β-estradiol (5489±2189 pg/gm in WT(WT) mice versus 3836±2160 pg/gm in WT(ArKO) mice, p = 0.08) but higher expression of estrogen receptor-α (ERα, Esr1), raising the possibility that aromatase deficiency in immune cells led to a compensatory increase in ERα signaling. No differences between groups were found with regard to body weight, adiposity, or gene expression within adipose tissue or liver. Immune cells are a key source of local 17β-estradiol production and contribute to metabolic regulation in males, particularly within skeletal muscle. The respective intracrine and paracrine roles of immune cell-derived estrogens require further delineation, as do the pathways that regulate aromatase activity in immune cells specifically within metabolic tissues.

Klíčová slova:

Adipose tissue – Body weight – Bone marrow transplantation – Cell metabolism – Estrogens – Glucose tolerance – Immune cells – Skeletal muscles


1. Simpson ER. Genetic mutations resulting in estrogen insufficiency in the male. Mol Cell Endocrinol. 1998;145(1–2):55–9. doi: 10.1016/s0303-7207(98)00169-5 9922099

2. Simpson ER, Jones ME. Of mice and men: the many guises of estrogens. Ernst Schering Found Symp Proc. 2006(1):45–67. doi: 10.1007/2789_2006_016 17824171

3. Chao J, Rubinow KB, Kratz M, Amory JK, Matsumoto AM, Page ST. Short-Term Estrogen Withdrawal Increases Adiposity in Healthy Men. J Clin Endocrinol Metab. 2016;101(10):3724–31. doi: 10.1210/jc.2016-1482 27482750

4. Finkelstein JS, Lee H, Burnett-Bowie SA, Pallais JC, Yu EW, Borges LF, et al. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369(11):1011–22. doi: 10.1056/NEJMoa1206168 24024838

5. Gibb FW, Homer NZ, Faqehi AM, Upreti R, Livingstone DE, McInnes KJ, et al. Aromatase Inhibition Reduces Insulin Sensitivity in Healthy Men. J Clin Endocrinol Metab. 2016;101(5):2040–6. doi: 10.1210/jc.2015-4146 26967690

6. Jones ME, Thorburn AW, Britt KL, Hewitt KN, Misso ML, Wreford NG, et al. Aromatase-deficient (ArKO) mice accumulate excess adipose tissue. J Steroid Biochem Mol Biol. 2001;79(1–5):3–9. doi: 10.1016/s0960-0760(01)00136-4 11850201

7. Jones ME, Boon WC, Proietto J, Simpson ER. Of mice and men: the evolving phenotype of aromatase deficiency. Trends Endocrinol Metab. 2006;17(2):55–64. doi: 10.1016/j.tem.2006.01.004 16480891

8. Oz OK, Hirasawa G, Lawson J, Nanu L, Constantinescu A, Antich PP, et al. Bone phenotype of the aromatase deficient mouse. J Steroid Biochem Mol Biol. 2001;79(1–5):49–59. doi: 10.1016/s0960-0760(01)00130-3 11850207

9. Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci U S A. 2000;97(23):12735–40. doi: 10.1073/pnas.97.23.12735 11070087

10. Oz OK, Zerwekh JE, Fisher C, Graves K, Nanu L, Millsaps R, et al. Bone has a sexually dimorphic response to aromatase deficiency. J Bone Miner Res. 2000;15(3):507–14. doi: 10.1359/jbmr.2000.15.3.507 10750565

11. Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 2003;86(3–5):225–30. doi: 10.1016/s0960-0760(03)00360-1 14623515

12. Simpson ER. Aromatase: biologic relevance of tissue-specific expression. Semin Reprod Med. 2004;22(1):11–23. doi: 10.1055/s-2004-823023 15083377

13. Blankenstein MA, Szymczak J, Daroszewski J, Milewicz A, Thijssen JH. Estrogens in plasma and fatty tissue from breast cancer patients and women undergoing surgery for non-oncological reasons. Gynecol Endocrinol. 1992;6(1):13–7. doi: 10.3109/09513599209081001 1580162

14. Wang F, Vihma V, Soronen J, Turpeinen U, Hämäläinen E, Savolainen-Peltonen H, et al. 17β-Estradiol and estradiol fatty acyl esters and estrogen-converting enzyme expression in adipose tissue in obese men and women. J Clin Endocrinol Metab. 2013;98(12):4923–31. doi: 10.1210/jc.2013-2605 24081738

15. Samy TS, Knöferl MW, Zheng R, Schwacha MG, Bland KI, Chaudry IH. Divergent immune responses in male and female mice after trauma-hemorrhage: dimorphic alterations in T lymphocyte steroidogenic enzyme activities. Endocrinology. 2001;142(8):3519–29. doi: 10.1210/endo.142.8.8322 11459798

16. Mor G, Yue W, Santen RJ, Gutierrez L, Eliza M, Berstein LM, et al. Macrophages, estrogen and the microenvironment of breast cancer. J Steroid Biochem Mol Biol. 1998;67(5–6):403–11. doi: 10.1016/s0960-0760(98)00143-5 10030689

17. Schmidt M, Weidler C, Naumann H, Anders S, Schölmerich J, Straub RH. Androgen conversion in osteoarthritis and rheumatoid arthritis synoviocytes—androstenedione and testosterone inhibit estrogen formation and favor production of more potent 5alpha-reduced androgens. Arthritis Res Ther. 2005;7(5):R938–48. doi: 10.1186/ar1769 16207335

18. Rubinow KB, Wall VZ, Nelson J, Mar D, Bomsztyk K, Askari B, et al. Acyl-CoA Synthetase 1 is Induced by Gram-Negative Bacteria and Lipopolysaccharide and is Required for Phospholipid Turnover in Stimulated Macrophages. J Biol Chem. 2013.

19. Nelson RE, Grebe SK, OKane DJ, Singh RJ. Liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin Chem. 2004;50(2):373–84. doi: 10.1373/clinchem.2003.025478 14656902

20. Zerwekh JE, Oz OK. Estrogen and androgen play distinct roles in bone turnover in male mice before and after reaching sexual maturity. Bone. 2007;40(2):553. doi: 10.1016/j.bone.2006.08.014 17023225

21. den Hartigh LJ, Wang S, Goodspeed L, Wietecha T, Houston B, Omer M, et al. Metabolically distinct weight loss by 10,12 CLA and caloric restriction highlight the importance of subcutaneous white adipose tissue for glucose homeostasis in mice. PLoS One. 2017;12(2):e0172912. doi: 10.1371/journal.pone.0172912 28245284

22. Rubinow KB, Wang S, den Hartigh LJ, Subramanian S, Morton GJ, Buaas FW, et al. Hematopoietic androgen receptor deficiency promotes visceral fat deposition in male mice without impairing glucose homeostasis. Andrology. 2015;3(4):787–96. doi: 10.1111/andr.12055 26097106

23. Kaiyala KJ, Morton GJ, Leroux BG, Ogimoto K, Wisse B, Schwartz MW. Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes. 2010;59(7):1657–66. doi: 10.2337/db09-1582 20413511

24. FOLCH J, LEES M, SLOANE STANLEY GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509. 13428781

25. Gaikwad NW. Ultra performance liquid chromatography-tandem mass spectrometry method for profiling of steroid metabolome in human tissue. Anal Chem. 2013;85(10):4951–60. doi: 10.1021/ac400016e 23597399

26. Rubinow KB, Chao J, Hagman D, Kratz M, Van Yserloo B, Gaikwad NW, et al. Circulating Sex Steroids Co-regulate Adipose Tissue Immune Cell Populations in Healthy Men. Am J Physiol Endocrinol Metab. 2017:ajpendo.00075.2017.

27. Takeda K, Toda K, Saibara T, Nakagawa M, Saika K, Onishi T, et al. Progressive development of insulin resistance phenotype in male mice with complete aromatase (CYP19) deficiency. J Endocrinol. 2003;176(2):237–46. doi: 10.1677/joe.0.1760237 12553872

28. Ribas V, Drew BG, Le JA, Soleymani T, Daraei P, Sitz D, et al. Myeloid-specific estrogen receptor alpha deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proc Natl Acad Sci U S A. 2011;108(39):16457–62. doi: 10.1073/pnas.1104533108 21900603

29. Ribas V, Drew BG, Zhou Z, Phun J, Kalajian NY, Soleymani T, et al. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci Transl Med. 2016;8(334):334ra54. doi: 10.1126/scitranslmed.aad3815 27075628

30. Barbosa MR, Shiguemoto GE, Tomaz LM, Ferreira FC, Rodrigues MF, Domingues MM, et al. Resistance Training and Ovariectomy: Antagonic Effects in Mitochondrial Biogenesis Markers in Rat Skeletal Muscle. Int J Sports Med. 2016;37(11):841–8. doi: 10.1055/s-0042-107247 27428645

31. Inada A, Fujii NL, Inada O, Higaki Y, Furuichi Y, Nabeshima YI. Effects of 17β-Estradiol and Androgen on Glucose Metabolism in Skeletal Muscle. Endocrinology. 2016;157(12):4691–705. doi: 10.1210/en.2016-1261 27653033

32. Malm C, Sjödin TL, Sjöberg B, Lenkei R, Renström P, Lundberg IE, et al. Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running. J Physiol. 2004;556(Pt 3):983–1000. doi: 10.1113/jphysiol.2003.056598 14766942

33. Van Sinderen ML, Steinberg GR, Jørgensen SB, To SQ, Knower KC, Clyne CD, et al. Hepatic glucose intolerance precedes hepatic steatosis in the male aromatase knockout (ArKO) mouse. PLoS One. 2014;9(2):e87230. doi: 10.1371/journal.pone.0087230 24520329

34. Ohlsson C, Hammarstedt A, Vandenput L, Saarinen N, Ryberg H, Windahl S, et al. Increased adipose tissue aromatase activity improves insulin sensitivity and reduces adipose tissue inflammation in male mice. Am J Physiol Endocrinol Metab. 2017:ajpendo.00093.2017.

35. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804. doi: 10.1016/j.immuni.2013.04.004 23601688

36. Katiraei S, Hoving LR, van Beek L, Mohamedhoesein S, Carlotti F, van Diepen JA, et al. BMT decreases HFD-induced weight gain associated with decreased preadipocyte number and insulin secretion. PLoS One. 2017;12(4):e0175524. doi: 10.1371/journal.pone.0175524 28445487

37. Nylander V, Ingerslev LR, Andersen E, Fabre O, Garde C, Rasmussen M, et al. Ionizing Radiation Potentiates High-Fat Diet-Induced Insulin Resistance and Reprograms Skeletal Muscle and Adipose Progenitor Cells. Diabetes. 2016;65(12):3573–84. doi: 10.2337/db16-0364 27650856

38. Cvoro A, Tzagarakis-Foster C, Tatomer D, Paruthiyil S, Fox MS, Leitman DC. Distinct roles of unliganded and liganded estrogen receptors in transcriptional repression. Mol Cell. 2006;21(4):555–64. doi: 10.1016/j.molcel.2006.01.014 16483936

39. Stellato C, Porreca I, Cuomo D, Tarallo R, Nassa G, Ambrosino C. The "busy life" of unliganded estrogen receptors. Proteomics. 2016;16(2):288–300. doi: 10.1002/pmic.201500261 26508451

40. Maggi A. Liganded and unliganded activation of estrogen receptor and hormone replacement therapies. Biochim Biophys Acta. 2011;1812(8):1054–60. doi: 10.1016/j.bbadis.2011.05.001 21605666

41. Brown NM, Setchell KD. Animal models impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones. Lab Invest. 2001;81(5):735–47. doi: 10.1038/labinvest.3780282 11351045

Článek vyšel v časopise


2020 Číslo 1