Two common disease-associated TYK2 variants impact exon splicing and TYK2 dosage


Autoři: Zhi Li aff001;  Maxime Rotival aff002;  Etienne Patin aff002;  Frédérique Michel aff001;  Sandra Pellegrini aff001
Působiště autorů: Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France aff001;  Unit of Human Evolutionary Genetics, Institut Pasteur, CNRS UMR2000, Paris, France aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225289

Souhrn

TYK2 belongs to the JAK protein tyrosine kinase family and mediates signaling of numerous antiviral and immunoregulatory cytokines (type I and type III IFNs, IL-10, IL-12, IL-22, IL-23) in immune and non-immune cells. After many years of genetic association studies, TYK2 is recognized as a susceptibility gene for some inflammatory and autoimmune diseases (AID). Seven TYK2 variants have been associated with AIDs in Europeans, and establishing their causality remains challenging. Previous work showed that a protective variant (P1104A) is hypomorphic and also a risk allele for mycobacterial infection. Here, we have studied two AID-associated common TYK2 variants: rs12720270 located in intron 7 and rs2304256, a non-synonymous variant in exon 8 that causes a valine to phenylalanine substitution (c.1084 G > T, Val362Phe). We found that this amino acid substitution does not alter TYK2 expression, catalytic activity or ability to relay signaling in EBV-B cell lines or in reconstituted TYK2-null cells. Based on in silico predictions that these variants may impact splicing of exon 8, we: i) analyzed TYK2 transcripts in genotyped EBV-B cells and in CRISPR/Cas9-edited cells, ii) measured splicing using minigene assays, and iii) performed eQTL (expression quantitative trait locus) analysis of TYK2 transcripts in primary monocytes and whole blood cells. Our results reveal that the two variants promote the inclusion of exon 8, which, we demonstrate, is essential for TYK2 binding to cognate receptors. In addition and in line with GTEx (Genetic Tissue Expression) data, our eQTL results show that rs2304256 mildly enhances TYK2 expression in whole blood. In all, these findings suggest that these TYK2 variants are not neutral but instead have a potential impact in AID.

Klíčová slova:

293T cells – Alleles – Autoimmune diseases – Cloning – Cytokines – Introns – Phosphorylation – Exon mapping


Zdroje

1. Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14(9):661–73. doi: 10.1038/nrg3502 23917628.

2. Papp K, Gordon K, Thaci D, Morita A, Gooderham M, Foley P, et al. Phase 2 Trial of Selective Tyrosine Kinase 2 Inhibition in Psoriasis. N Engl J Med. 2018;379(14):1313–21. doi: 10.1056/NEJMoa1806382 30205746.

3. Strobl B, Stoiber D, Sexl V, Mueller M. Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity. Front Biosci. 2011;17:3214–32. Epub 2011/05/31. doi: 10.2741/3908 21622231.

4. Leitner NR, Witalisz-Siepracka A, Strobl B, Muller M. Tyrosine kinase 2—Surveillant of tumours and bona fide oncogene. Cytokine. 2017;89:209–18. doi: 10.1016/j.cyto.2015.10.015 26631911.

5. Li Z, Gakovic M, Ragimbeau J, Eloranta ML, Ronnblom L, Michel F, et al. Two rare disease-associated tyk2 variants are catalytically impaired but signaling competent. J Immunol. 2013;190(5):2335–44. Epub 2013/01/30. doi: 10.4049/jimmunol.1203118 23359498.

6. Dendrou CA, Cortes A, Shipman L, Evans HG, Attfield KE, Jostins L, et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci Transl Med. 2016;8(363):363ra149. doi: 10.1126/scitranslmed.aag1974 27807284.

7. Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, et al. Tuberculosis and impaired IL-23-dependent IFN-gamma immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol. 2018;3(30). doi: 10.1126/sciimmunol.aau8714 30578352.

8. Kerner G, Ramirez-Alejo N, Seeleuthner Y, Yang R, Ogishi M, Cobat A, et al. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc Natl Acad Sci U S A. 2019;116(21):10430–4. doi: 10.1073/pnas.1903561116 31068474.

9. Gorman JA, Hundhausen C, Kinsman M, Arkatkar T, Allenspach EJ, Clough C, et al. The TYK2-P1104A Autoimmune Protective Variant Limits Coordinate Signals Required to Generate Specialized T Cell Subsets. Front Immunol. 2019;10:44. doi: 10.3389/fimmu.2019.00044 30740104.

10. Enerback C, Sandin C, Lambert S, Zawistowski M, Stuart PE, Verma D, et al. The psoriasis-protective TYK2 I684S variant impairs IL-12 stimulated pSTAT4 response in skin-homing CD4+ and CD8+ memory T-cells. Sci Rep. 2018;8(1):7043. doi: 10.1038/s41598-018-25282-2 29728633.

11. Graham DS, Akil M, Vyse TJ. Association of polymorphisms across the tyrosine kinase gene, TYK2 in UK SLE families. Rheumatology. 2007;46(6):927–30. doi: 10.1093/rheumatology/kel449 17384181.

12. Hellquist A, Jarvinen TM, Koskenmies S, Zucchelli M, Orsmark-Pietras C, Berglind L, et al. Evidence for Genetic Association and Interaction Between the TYK2 and IRF5 Genes in Systemic Lupus Erythematosus. J Rheumatol. 2009;36(8):1631–8. doi: 10.3899/jrheum.081160 19567624.

13. Sigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC, Sturfelt G, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet. 2005;76(3):528–37. doi: 10.1086/428480 15657875.

14. Morris DL, Sheng Y, Zhang Y, Wang YF, Zhu Z, Tombleson P, et al. Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet. 2016;48(8):940–6. doi: 10.1038/ng.3603 27399966.

15. Wallace C, Smyth DJ, Maisuria-Armer M, Walker NM, Todd JA, Clayton DG. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet. 2010;42(1):68–71. doi: 10.1038/ng.493 19966805.

16. Ragimbeau J, Dondi E, Alcover A, Eid P, Uze G, Pellegrini S. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J. 2003;22(3):537–47. doi: 10.1093/emboj/cdg038 12554654.

17. Kreins AY, Ciancanelli MJ, Okada S, Kong XF, Ramirez-Alejo N, Kilic SS, et al. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med. 2015;212(10):1641–62. doi: 10.1084/jem.20140280 26304966.

18. Pellegrini S, John J, Shearer M, Kerr IM, Stark GR. Use of a selectable marker regulated by alpha interferon to obtain mutations in the signaling pathway. Mol Cell Biol. 1989;9(11):4605–12. doi: 10.1128/mcb.9.11.4605 2513475.

19. Gauzzi MC, Velazquez L, McKendry R, Mogensen KE, Fellous M, Pellegrini S. Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J Biol Chem. 1996;271(34):20494–500. doi: 10.1074/jbc.271.34.20494 8702790.

20. Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet. 2007;8(10):749–61. doi: 10.1038/nrg2164 17726481.

21. Ragimbeau J, Dondi E, Vasserot A, Romero P, Uze G, Pellegrini S. The receptor interaction region of Tyk2 contains a motif required for its nuclear localization. J Biol Chem. 2001;276(33):30812–8. Epub 2001/06/16. doi: 10.1074/jbc.M103559200 11399767.

22. Richter MF, Dumenil G, Uze G, Fellous M, Pellegrini S. Specific contribution of Tyk2 JH regions to the binding and the expression of the interferon alpha/beta receptor component IFNAR1. J Biol Chem. 1998;273(38):24723–9. doi: 10.1074/jbc.273.38.24723 9733772.

23. Wallweber HJ, Tam C, Franke Y, Starovasnik MA, Lupardus PJ. Structural basis of recognition of interferon-alpha receptor by tyrosine kinase 2. Nat Struct Mol Biol. 2014;21(5):443–8. Epub 2014/04/08. doi: 10.1038/nsmb.2807 24704786.

24. Ferrao R, Lupardus PJ. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions. Front Endocrinol (Lausanne). 2017;8:71. doi: 10.3389/fendo.2017.00071 28458652.

25. Ferrao RD, Wallweber HJ, Lupardus PJ. Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation. Elife. 2018;7. doi: 10.7554/eLife.38089 30044226.

26. Quach H, Rotival M, Pothlichet J, Loh YE, Dannemann M, Zidane N, et al. Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations. Cell. 2016;167(3):643–56 e17. doi: 10.1016/j.cell.2016.09.024 27768888.

27. Duffy D, Rouilly V, Libri V, Hasan M, Beitz B, David M, et al. Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. Immunity. 2014;40(3):436–50. doi: 10.1016/j.immuni.2014.03.002 24656047.

28. Piasecka B, Duffy D, Urrutia A, Quach H, Patin E, Posseme C, et al. Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges. Proc Natl Acad Sci U S A. 2018;115(3):E488–E97. doi: 10.1073/pnas.1714765115 29282317.

29. Odhams CA, Cunninghame Graham DS, Vyse TJ. Profiling RNA-Seq at multiple resolutions markedly increases the number of causal eQTLs in autoimmune disease. PLoS Genet. 2017;13(10):e1007071. doi: 10.1371/journal.pgen.1007071 29059182.

30. Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a primary link between genetic variation and disease. Science. 2016;352(6285):600–4. doi: 10.1126/science.aad9417 27126046.

31. Manning KS, Cooper TA. The roles of RNA processing in translating genotype to phenotype. Nat Rev Mol Cell Biol. 2017;18(2):102–14. doi: 10.1038/nrm.2016.139 27847391.

32. Park E, Pan Z, Zhang Z, Lin L, Xing Y. The Expanding Landscape of Alternative Splicing Variation in Human Populations. Am J Hum Genet. 2018;102(1):11–26. doi: 10.1016/j.ajhg.2017.11.002 29304370.

33. Nielsen KB, Sorensen S, Cartegni L, Corydon TJ, Doktor TK, Schroeder LD, et al. Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer. Am J Hum Genet. 2007;80(3):416–32. doi: 10.1086/511992 17273963.

34. Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F, et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature. 2012;488(7412):508–11. Epub 2012/07/18. doi: 10.1038/nature11307 22801493.

35. Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18(4):521–8. Epub 2012/03/20. doi: 10.1038/nm.2713 22426421.

36. Matesanz F, Potenciano V, Fedetz M, Ramos-Mozo P, Abad-Grau Mdel M, Karaky M, et al. A functional variant that affects exon-skipping and protein expression of SP140 as genetic mechanism predisposing to multiple sclerosis. Hum Mol Genet. 2015;24(19):5619–27. doi: 10.1093/hmg/ddv256 26152201.

37. Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-Gonzalo J, et al. Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell. 2018;175(6):1701–15 e16. doi: 10.1016/j.cell.2018.10.022 30449622.

38. Rotival M, Quach H, Quintana-Murci L. Defining the genetic and evolutionary architecture of alternative splicing in response to infection. Nat Commun. 2019;10(1):1671. doi: 10.1038/s41467-019-09689-7 30975994.

39. Pickrell JK, Pai AA, Gilad Y, Pritchard JK. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 2010;6(12):e1001236. doi: 10.1371/journal.pgen.1001236 21151575.

40. Zouein FA, Duhe RJ, Booz GW. JAKs go nuclear: emerging role of nuclear JAK1 and JAK2 in gene expression and cell growth. Growth Factors. 2011;29(6):245–52. doi: 10.3109/08977194.2011.614949 21892841.

41. Potla R, Koeck T, Wegrzyn J, Cherukuri S, Shimoda K, Baker DP, et al. Tyk2 tyrosine kinase expression is required for the maintenance of mitochondrial respiration in primary pro-B lymphocytes. Mol Cell Biol. 2006;26(22):8562–71. doi: 10.1128/MCB.00497-06 16982690.

42. Derecka M, Gornicka A, Koralov SB, Szczepanek K, Morgan M, Raje V, et al. Tyk2 and Stat3 regulate brown adipose tissue differentiation and obesity. Cell Metab. 2012;16(6):814–24. doi: 10.1016/j.cmet.2012.11.005 23217260.

43. van Koetsveld PM, Vitale G, Feelders RA, Waaijers M, Sprij-Mooij DM, de Krijger RR, et al. Interferon-beta is a potent inhibitor of cell growth and cortisol production in vitro and sensitizes human adrenocortical carcinoma cells to mitotane. Endocr Relat Cancer. 2013;20(3):443–54. doi: 10.1530/ERC-12-0217 23507702.

44. Quatrini L, Wieduwild E, Escaliere B, Filtjens J, Chasson L, Laprie C, et al. Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nat Immunol. 2018;19(9):954–62. doi: 10.1038/s41590-018-0185-0 30127438.

45. Franco LM, Gadkari M, Howe KN, Sun J, Kardava L, Kumar P, et al. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. J Exp Med. 2019;216(2):384–406. doi: 10.1084/jem.20180595 30674564.

46. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45. doi: 10.1056/NEJMoa0907206 19890111.

47. Charbit-Henrion F, Begue B, Sierra A, Hanein S, Stolzenberg MC, Li Z, et al. Copy number variations and founder effect underlying complete IL-10Rbeta deficiency in Portuguese kindreds. PLoS One. 2018;13(10):e0205826. doi: 10.1371/journal.pone.0205826 30365510.

48. Tovey MG, Lallemand C. Safety, Tolerability, and Immunogenicity of Interferons. Pharmaceuticals (Basel). 2010;3(4):1162–86. doi: 10.3390/ph3041162 27713294.

49. Izumi K, Mine K, Inoue Y, Teshima M, Ogawa S, Kai Y, et al. Reduced Tyk2 gene expression in beta-cells due to natural mutation determines susceptibility to virus-induced diabetes. Nat Commun. 2015;6:6748. doi: 10.1038/ncomms7748 25849081.

50. Diogo D, Bastarache L, Liao KP, Graham RR, Fulton RS, Greenberg JD, et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS One. 2015;10(4):e0122271. Epub 2015/04/08. doi: 10.1371/journal.pone.0122271 25849893.

51. Lopez-Isac E, Campillo-Davo D, Bossini-Castillo L, Guerra SG, Assassi S, Simeon CP, et al. Influence of TYK2 in systemic sclerosis susceptibility: a new locus in the IL-12 pathway. Ann Rheum Dis. 2015. Epub 2015/09/05. doi: 10.1136/annrheumdis-2015-208154 26338038.

52. Dand N, Mucha S, Tsoi LC, Mahil SK, Stuart PE, Arnold A, et al. Exome-wide association study reveals novel psoriasis susceptibility locus at TNFSF15 and rare protective alleles in genes contributing to type I IFN signalling. Hum Mol Genet. 2017;26(21):4301–13. doi: 10.1093/hmg/ddx328 28973304.

53. Westra HJ, Martinez-Bonet M, Onengut-Gumuscu S, Lee A, Luo Y, Teslovich N, et al. Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat Genet. 2018;50(10):1366–74. doi: 10.1038/s41588-018-0216-7 30224649.

54. Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F, Wolman A, et al. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. Nat Genet. 2018;50(9):1327–34. doi: 10.1038/s41588-018-0192-y 30127527.

55. Li P, Chang YK, Shek KW, Lau YL. Lack of association of TYK2 gene polymorphisms in Chinese patients with systemic lupus erythematosus. J Rheumatol. 2011;38(1):177–8. doi: 10.3899/jrheum.100424 21196586.

56. Tang L, Wan P, Wang Y, Pan J, Wang Y, Chen B. Genetic association and interaction between the IRF5 and TYK2 genes and systemic lupus erythematosus in the Han Chinese population. Inflamm Res. 2015;64(10):817–24. doi: 10.1007/s00011-015-0865-2 26294277.

57. Sato K, Shiota M, Fukuda S, Iwamoto E, Machida H, Inamine T, et al. Strong evidence of a combination polymorphism of the tyrosine kinase 2 gene and the signal transducer and activator of transcription 3 gene as a DNA-based biomarker for susceptibility to Crohn's disease in the japanese population. J Clin Immunol. 2009. doi: 10.1007/s10875-009-9320-x 19653082.

58. Kyogoku C, Morinobu A, Nishimura K, Sugiyama D, Hashimoto H, Tokano Y, et al. Lack of association between tyrosine kinase 2 (TYK2) gene polymorphisms and susceptibility to SLE in a Japanese population. Mod Rheumatol. 2009;19(4):401–6. doi: 10.1007/s10165-009-0173-1 19440814.

59. Nagafuchi S, Kamada-Hibio Y, Hirakawa K, Tsutsu N, Minami M, Okada A, et al. TYK2 Promoter Variant and Diabetes Mellitus in the Japanese. EBioMedicine. 2015;2(7):744–9. doi: 10.1016/j.ebiom.2015.05.004 26288847.

60. Eid P, Tovey MG. Characterization of a domain of a human type I interferon receptor protein involved in ligand binding. J Interferon Cytokine Res. 1995;15(3):205–11. doi: 10.1089/jir.1995.15.205 7584665.

61. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. doi: 10.1038/nprot.2013.143 24157548.

62. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. doi: 10.1038/nbt.1621 20436464.

63. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012;22(10):2008–17. doi: 10.1101/gr.133744.111 22722343.

64. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. doi: 10.1093/bioinformatics/btu638 25260700.

65. Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat Genet. 2018;50(1):151–8. doi: 10.1038/s41588-017-0004-9 29229983.

66. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;28(10):1353–8. doi: 10.1093/bioinformatics/bts163 22492648.

67. Thomas S, Rouilly V, Patin E, Alanio C, Dubois A, Delval C, et al. The Milieu Interieur study—an integrative approach for study of human immunological variance. Clin Immunol. 2015;157(2):277–93. doi: 10.1016/j.clim.2014.12.004 25562703.

68. Thomas AO, Jackson DJ, Evans MD, Rajamanickam V, Gangnon RE, Fain SB, et al. Sex-related differences in pulmonary physiologic outcome measures in a high-risk birth cohort. J Allergy Clin Immunol. 2015;136(2):282–7. doi: 10.1016/j.jaci.2014.12.1927 25678088.

69. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23(10):1294–6. doi: 10.1093/bioinformatics/btm108 17384015.


Článek vyšel v časopise

PLOS One


2020 Číslo 1