Airway epithelial specific deletion of Jun-N-terminal kinase 1 attenuates pulmonary fibrosis in two independent mouse models

Autoři: Jos L. van der Velden aff001;  John F. Alcorn aff002;  David G. Chapman aff003;  Lennart K. A. Lundblad aff003;  Charles G. Irvin aff003;  Roger J. Davis aff004;  Kelly Butnor aff001;  Yvonne M. W. Janssen-Heininger aff001
Působiště autorů: Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States of America aff001;  Children’s Hospital of Pittsburgh University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America aff002;  Departments of Medicine, University of Vermont, Burlington, Vermont, United States of America aff003;  Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


The stress-induced kinase, c-Jun-N-terminal kinase 1 (JNK1) has previously been implicated in the pathogenesis of lung fibrosis. However, the exact cell type(s) wherein JNK1 exerts its pro-fibrotic role(s) remained enigmatic. Herein we demonstrate prominent activation of JNK in bronchial epithelia using the mouse models of bleomycin- or AdTGFβ1-induced fibrosis. Furthermore, in lung tissues of patients with idiopathic pulmonary fibrosis (IPF), active JNK was observed in various regions including type I and type II pneumocytes and fibroblasts. No JNK activity was observed in adjacent normal tissue or in normal control tissue. To address the role of epithelial JNK1, we ablated Jnk1 form bronchiolar and alveolar type II epithelial cells using CCSP-directed Cre recombinase-mediated ablation of LoxP-flanked Jnk1 alleles. Our results demonstrate that ablation of Jnk1 from airway epithelia resulted in a strong protection from bleomycin- or adenovirus expressing active transforming growth factor beta-1 (AdTGFβ1)-induced fibrosis. Ablation of the Jnk1 allele at a time when collagen increases were already present showed a reversal of existing increases in collagen content. Epithelial Jnk1 ablation resulted in attenuation of mesenchymal genes and proteins in lung tissue and preserved expression of epithelial genes. Collectively, these data suggest that epithelial JNK1 contributes to the pathogenesis of pulmonary fibrosis. Given the presence of active JNK in lungs from patients with IPF, targeting JNK1 in airway epithelia may represent a potential treatment strategy to combat this devastating disease.

Klíčová slova:

Basal cells – Collagens – Epithelial cells – Fibroblasts – Fibrosis – Mouse models – Pathogenesis – Pulmonary fibrosis


1. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117(3):524–9. Epub 2007/03/03. doi: 10.1172/JCI31487 17332879; PubMed Central PMCID: PMC1804380.

2. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006;103(35):13180–5. Epub 2006/08/23. doi: 10.1073/pnas.0605669103 16924102; PubMed Central PMCID: PMC1551904.

3. Yang J, Wheeler SE, Velikoff M, Kleaveland KR, LaFemina MJ, Frank JA, et al. Activated alveolar epithelial cells initiate fibrosis through secretion of mesenchymal proteins. Am J Pathol. 2013;183(5):1559–70. Epub 2013/09/10. doi: 10.1016/j.ajpath.2013.07.016 24012677; PubMed Central PMCID: PMC3814683.

4. Nureki SI, Tomer Y, Venosa A, Katzen J, Russo SJ, Jamil S, et al. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J Clin Invest. 2018;128(9):4008–24. Epub 2018/06/20. doi: 10.1172/JCI99287 29920187; PubMed Central PMCID: PMC6118576.

5. Zhong Q, Zhou B, Ann DK, Minoo P, Liu Y, Banfalvi A, et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am J Respir Cell Mol Biol. 2011;45(3):498–509. Epub 2010/12/21. doi: 10.1165/rcmb.2010-0347OC 21169555; PubMed Central PMCID: PMC3175581.

6. Burman A, Kropski JA, Calvi CL, Serezani AP, Pascoalino BD, Han W, et al. Localized hypoxia links ER stress to lung fibrosis through induction of C/EBP homologous protein. JCI Insight. 2018;3(16). Epub 2018/08/24. doi: 10.1172/jci.insight.99543 30135303; PubMed Central PMCID: PMC6141182.

7. Seibold MA, Smith RW, Urbanek C, Groshong SD, Cosgrove GP, Brown KK, et al. The idiopathic pulmonary fibrosis honeycomb cyst contains a mucocilary pseudostratified epithelium. PLoS One. 2013;8(3):e58658. Epub 2013/03/26. doi: 10.1371/journal.pone.0058658 23527003; PubMed Central PMCID: PMC3603941.

8. Matute-Bello G, Winn RK, Jonas M, Chi EY, Martin TR, Liles WC. Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am J Pathol. 2001;158(1):153–61. Epub 2001/01/06. doi: 10.1016/S0002-9440(10)63953-3 11141488; PubMed Central PMCID: PMC1850249.

9. Hagimoto N, Kuwano K, Miyazaki H, Kunitake R, Fujita M, Kawasaki M, et al. Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am J Respir Cell Mol Biol. 1997;17(3):272–8. Epub 1997/10/06. doi: 10.1165/ajrcmb.17.3.2893 9308912.

10. Sisson TH, Mendez M, Choi K, Subbotina N, Courey A, Cunningham A, et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med. 2010;181(3):254–63. Epub 2009/10/24. doi: 10.1164/rccm.200810-1615OC 19850947; PubMed Central PMCID: PMC2817814.

11. Degryse AL, Tanjore H, Xu XC, Polosukhin VV, Jones BR, McMahon FB, et al. Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2010;299(4):L442–52. doi: 10.1152/ajplung.00026.2010 20562227; PubMed Central PMCID: PMC2957416.

12. Borok Z, Whitsett JA, Bitterman PB, Thannickal VJ, Kotton DN, Reynolds SD, et al. Cell plasticity in lung injury and repair: report from an NHLBI workshop, April 19–20, 2010. Proc Am Thorac Soc. 2011;8(3):215–22. Epub 2011/06/10. doi: 10.1513/pats.201012-067CB 21653526; PubMed Central PMCID: PMC3132783.

13. Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B, et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature. 2015;517(7536):621–5. doi: 10.1038/nature14112 25533958; PubMed Central PMCID: PMC4312207.

14. Zuo W, Zhang T, Wu DZ, Guan SP, Liew AA, Yamamoto Y, et al. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature. 2015;517(7536):616–20. doi: 10.1038/nature13903 25383540.

15. Alcorn JF, Guala AS, van der Velden J, McElhinney B, Irvin CG, Davis RJ, et al. Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-beta1. J Cell Sci. 2008;121(Pt 7):1036–45. Epub 2008/03/13. doi: 10.1242/jcs.019455 18334556; PubMed Central PMCID: PMC2876720.

16. Velden JL, Alcorn JF, Guala AS, Badura EC, Janssen-Heininger YM. c-Jun N-terminal kinase 1 promotes transforming growth factor-beta1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3. Am J Respir Cell Mol Biol. 2011;44(4):571–81. Epub 2010/06/29. doi: 10.1165/rcmb.2009-0282OC 20581097; PubMed Central PMCID: PMC3095928.

17. van der Velden JL, Guala AS, Leggett SE, Sluimer J, Badura EC, Janssen-Heininger YM. Induction of a mesenchymal expression program in lung epithelial cells by wingless protein (Wnt)/beta-catenin requires the presence of c-Jun N-terminal kinase-1 (JNK1). Am J Respir Cell Mol Biol. 2012;47(3):306–14. Epub 2012/03/31. doi: 10.1165/rcmb.2011-0297OC 22461429; PubMed Central PMCID: PMC3488690.

18. Alcorn JF, van der Velden J, Brown AL, McElhinney B, Irvin CG, Janssen-Heininger YM. c-Jun N-terminal kinase 1 is required for the development of pulmonary fibrosis. Am J Respir Cell Mol Biol. 2009;40(4):422–32. Epub 2008/10/07. doi: 10.1165/rcmb.2008-0174OC 18836136; PubMed Central PMCID: PMC2660560.

19. van der Velden JL, Wagner DE, Lahue KG, Abdalla ST, Lam YW, Weiss DJ, et al. TGF-beta1-induced deposition of provisional extracellular matrix by tracheal basal cells promotes epithelial-to-mesenchymal transition in a c-Jun NH2-terminal kinase-1-dependent manner. Am J Physiol Lung Cell Mol Physiol. 2018;314(6):L984–L97. Epub 2018/02/23. doi: 10.1152/ajplung.00053.2017 29469614; PubMed Central PMCID: PMC6032072.

20. Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ, et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science. 2008;322(5907):1539–43. Epub 2008/12/06. doi: 10.1126/science.1160794 19056984; PubMed Central PMCID: PMC2643026.

21. Perl AK, Zhang L, Whitsett JA. Conditional expression of genes in the respiratory epithelium in transgenic mice: cautionary notes and toward building a better mouse trap. Am J Respir Cell Mol Biol. 2009;40(1):1–3. Epub 2008/12/17. doi: 10.1165/rcmb.2008-0011ED 19075182; PubMed Central PMCID: PMC2720111.

22. Teisanu RM, Lagasse E, Whitesides JF, Stripp BR. Prospective isolation of bronchiolar stem cells based upon immunophenotypic and autofluorescence characteristics. Stem Cells. 2009;27(3):612–22. Epub 2008/12/06. doi: 10.1634/stemcells.2008-0838 19056905; PubMed Central PMCID: PMC2773680.

23. Anathy V, Roberson E, Cunniff B, Nolin JD, Hoffman S, Spiess P, et al. Oxidative processing of latent Fas in the endoplasmic reticulum controls the strength of apoptosis. Mol Cell Biol. 2012;32(17):3464–78. doi: 10.1128/MCB.00125-12 22751926; PubMed Central PMCID: PMC3422013.

24. Woessner JF Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93:440–7. doi: 10.1016/0003-9861(61)90291-0 13786180.

25. Tomioka S, Bates JH, Irvin CG. Airway and tissue mechanics in a murine model of asthma: alveolar capsule vs. forced oscillations. J Appl Physiol (1985). 2002;93(1):263–70. doi: 10.1152/japplphysiol.01129.2001 12070213.

26. Li S, Aliyeva M, Daphtary N, Martin RA, Poynter ME, Kostin SF, et al. Antigen-induced mast cell expansion and bronchoconstriction in a mouse model of asthma. Am J Physiol Lung Cell Mol Physiol. 2014;306(2):L196–206. Epub 2013/11/29. doi: 10.1152/ajplung.00055.2013 24285269; PubMed Central PMCID: PMC3920205.

27. Yoshida K, Kuwano K, Hagimoto N, Watanabe K, Matsuba T, Fujita M, et al. MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis. J Pathol. 2002;198(3):388–96. Epub 2002/10/11. doi: 10.1002/path.1208 12375272.

28. Wygrecka M, Zakrzewicz D, Taborski B, Didiasova M, Kwapiszewska G, Preissner KT, et al. TGF-beta1 induces tissue factor expression in human lung fibroblasts in a PI3K/JNK/Akt-dependent and AP-1-dependent manner. Am J Respir Cell Mol Biol. 2012;47(5):614–27. Epub 2012/07/10. doi: 10.1165/rcmb.2012-0097OC 22771387.

29. Wang XM, Zhang Y, Kim HP, Zhou Z, Feghali-Bostwick CA, Liu F, et al. Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med. 2006;203(13):2895–906. Epub 2006/12/21. doi: 10.1084/jem.20061536 17178917; PubMed Central PMCID: PMC1850940.

30. Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight. 2016;1(20):e90558. doi: 10.1172/jci.insight.90558 27942595; PubMed Central PMCID: PMC5135277.

31. Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest. 2009;119(4):772–87. Epub 2009/03/17. doi: 10.1172/JCI33950 19287097; PubMed Central PMCID: PMC2662540.

32. Zent J, Guo LW. Signaling Mechanisms of Myofibroblastic Activation: Outside-in and Inside-Out. Cell Physiol Biochem. 2018;49(3):848–68. Epub 2018/09/06. doi: 10.1159/000493217 30184544.

33. Parker MW, Rossi D, Peterson M, Smith K, Sikstrom K, White ES, et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest. 2014;124(4):1622–35. doi: 10.1172/JCI71386 24590289; PubMed Central PMCID: PMC3971953.

34. Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, et al. Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res. 2010;107(2):294–304. Epub 2010/06/19. doi: 10.1161/CIRCRESAHA.110.223172 20558820; PubMed Central PMCID: PMC2921870.

35. Liang M, Yu M, Xia R, Song K, Wang J, Luo J, et al. Yap/Taz Deletion in Gli(+) Cell-Derived Myofibroblasts Attenuates Fibrosis. J Am Soc Nephrol. 2017;28(11):3278–90. Epub 2017/08/05. doi: 10.1681/ASN.2015121354 28768710; PubMed Central PMCID: PMC5661271.

36. Yoshida K, Yamaguchi T, Natsume T, Kufe D, Miki Y. JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat Cell Biol. 2005;7(3):278–85. Epub 2005/02/08. doi: 10.1038/ncb1228 15696159.

37. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol. 2015;17(9):1218–27. Epub 2015/08/11. doi: 10.1038/ncb3216 26258633; PubMed Central PMCID: PMC6186417.

38. Wang L, Luo JY, Li B, Tian XY, Chen LJ, Huang Y, et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 2016. Epub 2016/12/08. doi: 10.1038/nature20602 27926730.

39. Plantevin Krenitsky V, Nadolny L, Delgado M, Ayala L, Clareen SS, Hilgraf R, et al. Discovery of CC-930, an orally active anti-fibrotic JNK inhibitor. Bioorg Med Chem Lett. 2012;22(3):1433–8. Epub 2012/01/17. doi: 10.1016/j.bmcl.2011.12.027 22244937.

40. van der Velden JL, Ye Y, Nolin JD, Hoffman SM, Chapman DG, Lahue KG, et al. JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clin Transl Med. 2016;5(1):36. Epub 2016/09/04. doi: 10.1186/s40169-016-0117-2 27590145; PubMed Central PMCID: PMC5010551.

41. Dolhnikoff M, Mauad T, Ludwig MS. Extracellular matrix and oscillatory mechanics of rat lung parenchyma in bleomycin-induced fibrosis. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1750–7. Epub 1999/11/11. doi: 10.1164/ajrccm.160.5.9812040 10556151.

42. Reich N, Tomcik M, Zerr P, Lang V, Dees C, Avouac J, et al. Jun N-terminal kinase as a potential molecular target for prevention and treatment of dermal fibrosis. Ann Rheum Dis. 2012;71(5):737–45. Epub 2012/01/20. doi: 10.1136/annrheumdis-2011-200412 22258492.

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden