Valuing natural habitats for enhancing coastal resilience: Wetlands reduce property damage from storm surge and sea level rise

Autoři: Ali Mohammad Rezaie aff001;  Jarrod Loerzel aff002;  Celso M. Ferreira aff001
Působiště autorů: Civil, Environmental, and Infrastructure Engineering, George Mason University, Fairfax, Virginia, United States of America aff001;  CSS, Inc., under contract for NOAA National Centers for Coastal Ocean Science, Hollings Marine Laboratory, Charleston, SC, United States of America aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


Storm surge and sea level rise (SLR) are affecting coastal communities, properties, and ecosystems. While coastal ecosystems, such as wetlands and marshes, have the capacity to reduce the impacts of storm surge and coastal flooding, the increasing rate of SLR can induce the transformation and migration of these natural habitats. In this study, we combined coastal storm surge modeling and economic analysis to evaluate the role of natural habitats in coastal flood protection. We focused on a selected cross-section of three coastal counties in New Jersey adjacent to the Jacques Cousteau National Estuarine Research Reserve (JCNERR) that is protected by wetlands and marshes. The coupled coastal hydrodynamic and wave models, ADCIRC+SWAN, were applied to simulate flooding from historical and synthetic storms in the Mid-Atlantic US for current and future SLR scenarios. The Sea Level Affecting Marshes Model (SLAMM) was used to project the potential migration and habitat transformation in coastal marshes due to SLR in the year 2050. Furthermore, a counterfactual land cover approach, in which marshes are converted to open water in the model, was implemented for each storm scenario in the present and the future to estimate the amount of flooding that is avoided due to the presence of natural habitats and the subsequent reduction in residential property damage. The results indicate that this salt marshes can reduce up to 14% of both the flood depth and property damage during relatively low intensity storm events, demonstrating the efficacy of natural flood protection for recurrent storm events. Monetarily, this translates to the avoidance of up to $13.1 and $32.1 million in residential property damage in the selected coastal counties during the ‘50-year storm’ simulation and hurricane Sandy under current sea level conditions, and in the year ‘2050 SLR scenario’, respectively. This research suggests that protecting and preserving natural habitats can contribute to enhance coastal resilience.

Klíčová slova:

Coastal ecosystems – Flooding – Fresh water – Habitats – Marshes – Storms – Wetlands – Sea level rise


1. Lin N, Shullman E. Dealing with hurricane surge flooding in a changing environment: part I. Risk assessment considering storm climatology change, sea level rise, and coastal development. Stoch Environ Res Risk Assess. 2017;31: 2379–2400. doi: 10.1007/s00477-016-1377-5

2. Neumann JE, Emanuel K, Ravela S, Ludwig L, Kirshen P, Bosma K, et al. Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy. Clim Change. 2015;129: 337–349. doi: 10.1007/s10584-014-1304-z

3. Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J. Future flood losses in major coastal cities. Nat Clim Chang. 2013;3: 802–806. doi: 10.1038/nclimate1979

4. Woodruff JD, Irish JL, Camargo SJ. Coastal flooding by tropical cyclones and sea-level rise. Nature. 2013;504: 44–52. doi: 10.1038/nature12855 24305147

5. Strauss B, Tebaldi C, Ziemlinski R. Sea level rise, storms & global warming’s threat to the US coast. 2012; 1–13.

6. Parris A, Bromirski P, Burkett V, Cayan DR, Culver M, Hall J, et al. Global sea level rise scenarios for the United States National Climate Assessment. 2012.

7. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergov Panel Clim Chang Work Gr I Contrib to IPCC Fifth Assess Rep (AR5)(Cambridge Univ Press New York). 2013; 1535. doi: 10.1029/2000JD000115

8. Hallegatte S, Ranger N, Mestre O, Dumas P, Corfee-Morlot J, Herweijer C, et al. Assessing climate change impacts, sea level rise and storm surge risk in port cities: A case study on Copenhagen. Clim Change. 2011;104: 113–137. doi: 10.1007/s10584-010-9978-3

9. Frey AE, Olivera F, Irish JL, Dunkin LM, Kaihatu JM, Ferreira CM, et al. Potential impact of climate change on hurricane flooding inundation, population affected and property damages in Corpus Christi. J Am Water Resour Assoc. 2010;46: 1049–1059. doi: 10.1111/j.1752-1688.2010.00475.x

10. Reed DJ. The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surf Process Landforms. 1995;20: 39–48. doi: 10.1002/esp.3290200105

11. Cahoon DR, Hensel PF, Spencer T, Reed DJ, McKee KL, Saintilan N. Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls. Wetl Nat Resour Manag. 2006;190: 271–292. doi: 10.1007/978-3-540-33187-2_12

12. Morris JT, Sundareshwar P V, Nietch CT, Kjerfve B, Cahoon DR. Responses of coastal wetlands to rising sea level. Ecology. 2002;83: 2869–2877.

13. McFadden L, Spencer T, Nicholls RJ. Broad-scale modelling of coastal wetlands: What is required? Hydrobiologia. 2007;577: 5–15. doi: 10.1007/s10750-006-0413-8

14. Spencer T, Schuerch M, Nicholls RJ, Hinkel J, Lincke D, Vafeidis AT, et al. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Glob Planet Change. 2016;139: 15–30. doi: 10.1016/j.gloplacha.2015.12.018

15. Wamsley T V., Cialone MA, Smith JM, Atkinson JH, Rosati JD. The potential of wetlands in reducing storm surge. Ocean Eng. 2010;37: 59–68. doi: 10.1016/j.oceaneng.2009.07.018

16. Paquier AE, Haddad J, Lawler S, Ferreira CM. Quantification of the Attenuation of Storm Surge Components by a Coastal Wetland of the US Mid Atlantic. Estuaries and Coasts. 2017;40: 930–946. doi: 10.1007/s12237-016-0190-1

17. Glass EM, Garzon JL, Lawler S, Paquier E, Ferreira CM. Potential of marshes to attenuate storm surge water level in the Chesapeake Bay. Limnol Oceanogr. 2017. doi: 10.1002/lno.10682

18. Stark J, Plancke Y, Ides S, Meire P, Temmerman S. Coastal flood protection by a combined nature-based and engineering approach: Modeling the effects of marsh geometry and surrounding dikes. Estuar Coast Shelf Sci. 2016;175: 34–45. doi: 10.1016/j.ecss.2016.03.027

19. Möller I, Kudella M, Rupprecht F, Spencer T, Paul M, van Wesenbeeck BK, et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat Geosci. 2014;7: 727–731. doi: 10.1038/ngeo2251

20. Anderson ME, Smith JM. Wave attenuation by flexible, idealized salt marsh vegetation. Coast Eng. 2014;83: 82–92. doi: 10.1016/j.coastaleng.2013.10.004

21. Garzon JL, Miesse T, Ferreira CM. Field-based numerical model investigation of wave propagation across marshes in the Chesapeake Bay under storm conditions. Coast Eng. 2019;146: 32–46. doi: 10.1016/j.coastaleng.2018.11.001

22. Shepard CC, Crain CM, Beck MW. The Protective Role of Coastal Marshes: A Systematic Review and Meta-analysis. Clifton J, editor. PLoS One. 2011;6: e27374. doi: 10.1371/journal.pone.0027374 22132099

23. Barbier EB, Georgiou IY, Enchelmeyer B, Reed DJ. The Value of Wetlands in Protecting Southeast Louisiana from Hurricane Storm Surges. PLoS One. 2013;8: 1–6. doi: 10.1371/journal.pone.0058715 23536815

24. Narayan S, Beck MW, Reguero BG, Losada IJ, Van Wesenbeeck B, Pontee N, et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS One. 2016;11: 1–17. doi: 10.1371/journal.pone.0154735 27135247

25. Feagin RA, Lozada-Bernard SM, Ravens TM, Möller I, Yeager KM, Baird a H. Does vegetation prevent wave erosion of salt marsh edges? Proc Natl Acad Sci U S A. 2009;106: 10109–13. doi: 10.1073/pnas.0901297106 19509340

26. Barbier E. B., Acreman M. and Knowler D. Economic Valuation of Wetlands: A guide for policy makers and planners. 1997.

27. Barbier EB. Valuing ecosystem services as productive inputs. Econ Policy. 2007;22: 177–229. doi: 10.1111/j.1468-0327.2007.00174.x

28. Barbier EB. Valuing the storm protection service of estuarine and coastal ecosystems. Ecosyst Serv. 2015;11: 32–38. doi: 10.1016/j.ecoser.2014.06.010

29. Haddad J, Lawler S, Ferreira CM. Assessing the relevance of wetlands for storm surge protection: a coupled hydrodynamic and geospatial framework. Nat Hazards. 2016;80: 839–861. doi: 10.1007/s11069-015-2000-7

30. Remoundou K, Diaz-Simal P, Koundouri P, Rulleau B. Valuing climate change mitigation: A choice experiment on a coastal and marine ecosystem. Ecosyst Serv. 2015;11: 87–94. doi: 10.1016/j.ecoser.2014.11.003

31. Sathirathai S, Barbier EB. Valuing mangrove conservation in Southern Thailand. Contemp Econ Policy. 2001;19: 109–122. doi: 10.1111/j.1465-7287.2001.tb00054.x

32. Barbier EB, Enchelmeyer BS. Valuing the storm surge protection service of US Gulf Coast wetlands. J Environ Econ Policy. 2014;3: 167–185. doi: 10.1080/21606544.2013.876370

33. Koch EW, Barbier EB, Silliman BR, Reed DJ, Perillo GME, Hacker SD, et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front Ecol Environ. 2009;7: 29–37. doi: 10.1890/080126

34. Barbier EB, Koch EW, Silliman BR, Hacker SD, Wolanski E, Primavera J, et al. Coastal ecosystem-based management with nonlinear ecological functions and values—supporting material. Science. 2008;319: 321–3. doi: 10.1126/science.1150349 18202288

35. Narayan S, Beck MW, Wilson P, Thomas CJ, Shepard CC, Reguero BG, et al. The Value of Coastal Wetlands for Flood Damage Reduction in the Northeastern USA. Sci Rep. 2017; 1–12. doi: 10.1038/s41598-016-0028-x

36. Arkema KK, Griffin R, Maldonado S, Silver J, Suckale J, Guerry AD. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities. Ann N Y Acad Sci. 2017;1399: 5–26. doi: 10.1111/nyas.13322 28370069

37. Dietrich JC, Bunya S, Westerink JJ, Ebersole BA, Smith JM, Atkinson JH, et al. A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part II: Synoptic Description and Analysis of Hurricanes Katrina and Rita. Mon Weather Rev. 2010;138: 378–404. doi: 10.1175/2009MWR2907.1

38. Dietrich JC, Zijlema M, Westerink JJ, Holthuijsen LH, Dawson C, Luettich RA, et al. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast Eng. 2011;58: 45–65. doi: 10.1016/j.coastaleng.2010.08.001

39. Marsooli R, Lin N. Numerical modeling of historical storm tides and waves and their interactions along the U.S. East and Gulf Coasts. J Geophys Res Ocean. 2018;123: 3844–3874. doi: 10.1029/2017JC013434

40. JCNERR. Jacques Cousteau National Estuarine Research Reserve. 2016. Available:

41. Kennish MJ. Profile Report for the Jacques Cousteau National Estuarine Research Reserve. ilver Spring, Maryland.; 2007. Available:

42. ESRI. World Topographic Map. [cited 6 Sep 2019]. Available:

43. ESRI. World Imagery. [cited 6 Sep 2019]. Available:

44. ESRI. World Ocean Base. [cited 6 Sep 2019]. Available:

45. Colle BA, Buonaiuto F, Bowman MJ, Wilson RE, Flood R, Hunter R, et al. New York City’s Vulnerability to coastal flooding. Bull Am Meteorol Soc. 2008;89: 829–841. doi: 10.1175/2007BAMS2401.1

46. Wamsley T V., Cialone MA, Smith JM, Ebersole BA, Grzegorzewski AS. Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana. Nat Hazards. 2009;51: 207–224. doi: 10.1007/s11069-009-9378-z

47. Lin N, Smith JA, Villarini G, Marchok TP, Baeck ML. Modeling Extreme Rainfall, Winds, and Surge from Hurricane Isabel (2003). Weather Forecast. 2010;25: 1342–1361. doi: 10.1175/2010WAF2222349.1

48. ARCADIS. ADCIRC Based Storm Surge Analysis of Sea Level Rise in Saint Andrew and Choctawhatchee Bays. 2011.

49. ARCADIS. ADCIRC Based Storm Surge Analysis of Sea Level Rise in the Corpus Christi Bay Area in Texas. 2013. Available:

50. Lawler S, Haddad J, Ferreira CM. Sensitivity considerations and the impact of spatial scaling for storm surge modeling in wetlands of the Mid-Atlantic region. Ocean Coast Manag. 2016;134: 226–238. doi: 10.1016/j.ocecoaman.2016.10.008

51. Garzon J, Ferreira C. Storm Surge Modeling in Large Estuaries: Sensitivity Analyses to Parameters and Physical Processes in the Chesapeake Bay. J Mar Sci Eng. 2016;4: 45. doi: 10.3390/jmse4030045

52. Bigalbal A, Rezaie A. M., Garzon J, Ferreira C. Potential Impacts of Sea Level Rise and Marsh Migration on Storm Surge Hydrodynamics and Waves in Coastal Protected Areas in the Chesapeake Bay. J Mar Sci Eng. 2018. doi: 10.3390/jmse6030086

53. Deb M, Ferreira CM. Simulation of cyclone-induced storm surges in the low-lying delta of Bangladesh using coupled hydrodynamic and wave model (SWAN + ADCIRC). 2018;11: 750–765. doi: 10.1111/jfr3.12254

54. Luettich, R.A. J and JJW. Luettich, R.A., Jr. and J.J. Westerink, 1995, Implementation and testing of elemental flooding and drying in the ADCIRC hydrodynamic model, Final Report, 8/95, Contract # DACW39-94-M-5869. 1995.

55. Luettich R. Formulation and Numerical Implementation of the 2D / 3D ADCIRC Finite Element Model Version 44. XX. 2004; 1–74.

56. Mattocks et al. Design and Implementation of a Real-Time Storm Surge and Flood Forecasting Capability for the State of North Carolina. 2006; 103.

57. Mattocks C, Forbes C. A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model. 2008;25: 95–119. doi: 10.1016/j.ocemod.2008.06.008

58. Booij N, Ris RC, Holthuijsen LH. A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res. 1999;104: 7649–7666. doi: 10.1029/98JC02622

59. Joel Casey Dietrich. Development and Application Of Coupled Hurricane Wave and Surge Models for Southern Louisiana. University of Notre Dame. 2010.

60. FEMA. Region II Coastal Storm Surge Study: Overview. Washington DC; 2014.

61. FEMA. Region II Storm Surge Project—Mesh Development. Washington DC; 2014.

62. FEMA. Region II Storm Surge Project–Model Calibration and Validation. Washington DC; 2014.

63. FEMA. Region II Storm Surge Project—Coastal Terrain Processing Methodology. Washington DC; 2014.

64. NOAA-CSC. C-CAP Land Cover Atlas. 2013 [cited 24 May 2017]. Available:

65. Ferreira CM. Uncertainty in hurricane surge simulation due to land cover specification. J Geophys Res Ocean. 2014; 1812–1827. doi: 10.1002/2013JC009604.Received

66. Atkinson J, Ph D, Hagen SC, Ce D, Wre D, Zou S, et al. Deriving Frictional Parameters and Performing Historical Validation for an ADCIRC Storm Surge Model of the Florida Gulf Coast. Florida Watershed. 2011;4: 22–27.

67. Dietrich JC, Tanaka S, Westerink JJ, Dawson CN, Luettich RA, Zijlema M, et al. Performance of the unstructured-mesh, SWAN+ ADCIRC model in computing hurricane waves and surge. J Sci Comput. 2012;52: 468–497. doi: 10.1007/s10915-011-9555-6

68. Garratt JR. Review of Drag Coefficients over Oceans and Continents. Monthly Weather Review. 1977. pp. 915–929. doi: 10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2

69. Resio DT, Westerink JJ. Modeling the physics of storm surges. Phys Today. 2008;61: 33–38. doi: 10.1063/1.2982120

70. Ferreira CM, Irish JL, Olivera F. Quantifying the potential impact of land cover changes due to sea-level rise on storm surge on lower Texas coast bays. Coast Eng. 2014;94: 102–111. doi: 10.1016/j.coastaleng.2014.08.011

71. Lin N, Kopp RE, Horton BP, Donnelly JP. Hurricane Sandy’s flood frequency increasing from year 1800 to 2100. Proc Natl Acad Sci U S A. 2016;113: 12071–12075. doi: 10.1073/pnas.1604386113 27790992

72. Nadal-caraballo NC, Melby JA, Gonzalez VM, Cox AT. Coastal Storm Hazards from Virginia to Maine Coastal and Hydraulics Laboratory. 2015.

73. Craft C, Clough J, Ehman J, Jove S, Park R, Pennings S, et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ. 2009;7: 73–78. doi: 10.1890/070219

74. Glick P, Clough J, Polaczyk A, Couvillion B, Nunley B. Potential Effects of Sea-Level Rise on Coastal Wetlands in Southeastern Louisiana. J Coast Res Spec Issue 63-Understanding Predict Charg Coast Ecosyst North Gulf Mex. 2013;63: 211–233. doi: 10.2112/SI63-0017.1

75. Clough J.S.; Park R.A., and Fuller R. SLAMM 6.7 Technical Documentation. 2016.

76. Clough J, Polaczyk A, Propato M. Environmental Modelling & Software Modeling the potential effects of sea-level rise on the coast of New York: Integrating mechanistic accretion and stochastic uncertainty. Environ Model Softw. 2016;84: 349–362. doi: 10.1016/j.envsoft.2016.06.023

77. USFWS. National Wetlands Inventory. [cited 26 Apr 2018]. Available:

78. NOAA. Coastal Change Analysis Program Regional Land Cover and Change. 2016. Available:

79. Cowardin LM, Carter V, Golet FC, LaRoe ET. Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013 Second Ed. 1979; 79. FWS/OBS-79/31

80. Handley BL, Wells C. Comparison of NLCD with NWI Classifications of Baldwin and Mobile Counties, Alabama. 2009.

81. Gesch D, Evans G, Mauck J, Hutchinson J, Jr. WJC. The National Map—Elevation: U.S. Geological Fact Sheet 2009–3053. Strategies. 2009; 4.

82. NOAA. NOAA Tides & Currents. [cited 26 Apr 2018]. Available:

83. Church JA, White NJ. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv Geophys. 2011;32: 585–602. doi: 10.1007/s10712-011-9119-1

84. Church J a., Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, et al. Sea level change. Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013. pp. 1137–1216. doi: 10.1017/CB09781107415315.026

85. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP. Climate Change and Water. Climate change and water. 2008. doi: 10.1016/j.jmb.2010.08.039

86. Kopp RE, Horton RM, Little CM, Mitrovica JX, Oppenheimer M, Rasmussen DJ, et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Futur. 2014;2: 383–406. doi: 10.1002/2014ef000239

87. D’Alpaos A, Lanzoni S, Marani M, Rinaldo A. Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. J Geophys Res Earth Surf. 2007;112: 1–17. doi: 10.1029/2006JF000537

88. Lathrop R, Auermuller L, Trimble J, Bognar J. The Application of WebGIS Tools for Visualizing Coastal Flooding Vulnerability and Planning for Resiliency: The New Jersey Experience. ISPRS Int J Geo-Information. 2014;3: 408–429. doi: 10.3390/ijgi3020408

89. Murdukhayeva A, August P, Bradley M, LaBash C, Shaw N. Assessment of Inundation Risk from Sea Level Rise and Storm Surge in Northeastern Coastal National Parks. J Coast Res. 2013;291: 1–16. doi: 10.2112/JCOASTRES-D-12-00196.1

90. Linhoss AC, Kiker G, Shirley M, Frank K. Sea-Level Rise, Inundation, and Marsh Migration: Simulating Impacts on Developed Lands and Environmental Systems. J Coast Res. 2015;299: 36–46. doi: 10.2112/JCOASTRES-D-13-00215.1

91. Schile LM, Callaway JC, Morris JT, Stralberg D, Thomas Parker V, Kelly M. Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS One. 2014;9. doi: 10.1371/journal.pone.0088760 24551156

92. Costanza R, Pérez-Maqueo O, Martinez ML, Sutton P, Anderson SJ, Mulder K. The Value of Coastal Wetlands for Hurricane Protection. AMBIO A J Hum Environ. 2008;37: 241–248. doi: 10.1579/0044-7447(2008)37[241:TVOCWF]2.0.CO;2

93. United States Army Corps of Engineers (USACE). Economic Guidance Memorandum (EGM) 04–01, Generic Depth-Damage Relationships for Residential Structures with Basements. 2003.

94. New Jersey Department of the Treasury. New Jersey Department of the Treasury. [cited 23 Apr 2018]. Available:

95. Ferreira CM, Olivera F, Irish JL. Arc StormSurge: Integrating Hurricane Storm Surge Modeling and GIS. J Am Water Resour Assoc. 2014;50: 219–233. doi: 10.1111/jawr.12127

96. Kousky C, Walls M. Floodplain conservation as a fl ood mitigation strategy: Examining costs and bene fi ts. Ecol Econ. 2014;104: 119–128. doi: 10.1016/j.ecolecon.2014.05.001

97. Seidel V, Richards H, Beitsch O. Evaluating Coastal Real Estate Value vs. Risk in the Wake of Sea Level Rise. Real Estate Issues. 2013;38: 16–27.

98. Boutwell JL, Westra J V. Evidence of Diminishing Marginal Product of Wetlands for Damage Mitigation. Nat Resour. 2015;06: 48–55. doi: 10.4236/nr.2015.61006

99. Emanuel KA. The dependence of hurricane intensity on climate. Nature. 1987;326: 483. Available:

100. Knutson TR, Tuleya RE. Impact of CO₂-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization. J Clim. 2004;17: 3477–3495.

101. Kirwan ML, Megonigal JP. Tidal wetland stability in the face of human impacts and sea-level rise. Nature. 2013;504: 53–60. doi: 10.1038/nature12856 24305148

102. Hu K, Chen Q, Wang H, Hartig EK, Orton PM. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy. Coast Eng. 2018;132: 63–81. doi: 10.1016/j.coastaleng.2017.11.001

103. Temmerman S, Bouma TJ, Van de Koppel J, Van der Wal D, De Vries MB, Herman PMJ. Vegetation causes channel erosion in a tidal landscape. Geology. 2007;35: 631–634. doi: 10.1130/G23502A.1

104. Kirwan ML, Temmerman S, Skeehan EE, Guntenspergen GR, Fagherazzi S. Overestimation of marsh vulnerability to sea level rise. Nat Clim Chang. 2016;6: 253–260. doi: 10.1038/nclimate2909

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden