Circulating CTRP9 correlates with the prevention of aortic calcification in renal allograft recipients

Autoři: Nobuhiko Miyatake aff001;  Hiroki Adachi aff001;  Kanae Nomura-Nakayama aff001;  Keiichiro Okada aff001;  Kazuaki Okino aff001;  Norifumi Hayashi aff001;  Keiji Fujimoto aff001;  Kengo Furuichi aff001;  Hitoshi Yokoyama aff001
Působiště autorů: Department of Nephrology, Kanazawa Medical University School of Medicine, Daigaku, Uchinada, Ishikawa, Japan aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article



Cardiovascular disease (CVD) due to atherosclerosis is a major cause of death in renal allograft recipients. Recently, C1q/TNF-α related protein-9 (CTRP9), which is a paralog of adiponectin (ADPN), has been suggested to be related to the prevention of atherosclerosis and the occurrence of CVD, but this relationship has not been confirmed in renal allograft recipients.

Subjects and methods

The relationships among the serum CTRP9 concentration, serum ADPN concentration, and vascular calcification were investigated in 50 kidney transplantation recipients at our hospital. Calcification of the abdominal aorta was evaluated according to the aortic calcification area index (ACAI) calculated from CT images. Changes in the serum CTRP9 and ADPN fractions and ACAI were examined for 8 years. In addition, the expression of CTRP9 and ADPN and their respective receptors AdipoR1 and R2 in muscular arteries of the kidney was examined by immunofluorescence.


In renal allograft recipients, the serum CTRP9 concentration at the start of the observation was not significant correlated with eGFR or serum high-molecular-weight (HMW)-ADPN concentration (rS = -0.009, p = 0.950; rS = -0.226, p = 0.114, respectively). However, the change in the serum CTRP9 concentration was positively correlated with the change in the serum HMW-ADPN concentration (rS = 0.315, p = 0.026) and negatively correlated with the change in ACAI (rS = -0.367, p = 0.009). Multiple regression analysis revealed that the serum HMW-ADPN concentration was a significant positive factor for the change in the serum CTRP9 concentration. Moreover, for ACAI, an increase in the serum CTRP9 concentration was an improving factor, but aging was an exacerbating factor. Furthermore, colocalization of CTRP9 and AdipoR1 was noted in the luminal side of intra-renal arterial intima.


In renal allograft recipients, both CTRP9 and HMW-ADPN were suggested to prevent the progression of aortic calcification through AdipoR1.

Klíčová slova:

Adiponectin – Calcification – Cardiovascular diseases – Inflammation – Lipids – Regression analysis – Renal system – Renal transplantation


1. Ushigome H. and Yoshimura N. (2016). "The outcome and problem of kidney transplantations." Japanese Journal of Transplantation51(4–5): 331–340.

2. Ojo A. O. (2006). "Cardiovascular complications after renal transplantation and their prevention." Transplantation82(5): 603–611. doi: 10.1097/ 16969281

3. Bia P. d. M. J. (1995). "Nonimmunologic causes of late renal graft loss." Kidney International47(5): 1470–1480. doi: 10.1038/ki.1995.206 7637276

4. Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Kadowaki T., et al. (2006). "Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome." Diabetes Care29(6): 1357–1362. doi: 10.2337/dc05-1801 16732021

5. Kobayashi H, Ouchi N, Kihara S, Walsh K, Kumada M, Matsuzawa Y., et al. (2004). "Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin." Circ Res94(4): e27–31. doi: 10.1161/01.RES.0000119921.86460.37 14752031

6. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S Matsuzawa Y., et al. (2003). "Association of hypoadiponectinemia with coronary artery disease in men." Arterioscler Thromb Vasc Biol23(1): 85–89. doi: 10.1161/01.atv.0000048856.22331.50 12524229

7. Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T, Ouchi N., et al. (2017). "Role of Adipokines in Cardiovascular Disease." Circ J81(7): 920–928. doi: 10.1253/circj.CJ-17-0458 28603178

8. Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, Ge G, Spooner E, Lodish HF., et al. (2009). "Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin." Faseb j23(1): 241–258. doi: 10.1096/fj.08-114991 18787108

9. Kambara T, Ohashi K, Shibata R, Ogura Y, Maruyama S, Ouchi N., et al. (2012). "CTRP9 protein protects against myocardial injury following ischemia-reperfusion through AMP-activated protein kinase (AMPK)-dependent mechanism." J Biol Chem287(23): 18965–18973. doi: 10.1074/jbc.M112.357939 22514273

10. Adachi H, Nakayama K, Hayashi N, Matsui Y, Fujimoto K, Yokoyama H., et al. (2016). "Adiponectin Fractions Influence the Development of Posttransplant Diabetes Mellitus and Cardiovascular Disease in Japanese Renal Transplant Recipients." PLoS One 11(10): e0163899. doi: 10.1371/journal.pone.0163899 27706207

11. Nomura-Nakayama K, Adachi H, Miyatake N, Hayashi N, Fujimoto K, Yokoyama H., et al. (2018). "High molecular weight adiponectin inhibits vascular calcification in renal allograft recipients." PLoS One13(5): e0195066. doi: 10.1371/journal.pone.0195066 29718962

12. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Hishida A., et al. (2009). "Revised equations for estimated GFR from serum creatinine in Japan." Am J Kidney Dis 53(6): 982–992. doi: 10.1053/j.ajkd.2008.12.034 19339088

13. Kamon J, Yamauchi T, Muto S, Takekawa S, Ito Y, Kadowaki T., et al. (2004). "A novel IKKbeta inhibitor stimulates adiponectin levels and ameliorates obesity-linked insulin resistance." Biochem Biophys Res Commun 323(1): 242–248. doi: 10.1016/j.bbrc.2004.08.083 15351728

14. Arimatsu K, Yamada H, Miyazawa H, Minagawa T, Nakajima M, Yamazaki K., et al. (2014). "Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota." Sci Rep4: 4828.

15. Song K. Y. and Shim J. H. (2012). "Clinical significance of obesity index (VFA versus BMI) as a risk factor for gastric cancer surgery." Journal of Clinical Oncology 30(4_suppl): 139–139.

16. Janigan DT, Hirsch DJ, Klassen GA, MacDonald AS. (2000). "Calcified subcutaneous arterioles with infarcts of the subcutis and skin ("calciphylaxis") in chronic renal failure." Am J Kidney Dis35(4): 588–597. doi: 10.1016/s0272-6386(00)70003-5 10739777

17. Iribarren C, Sidney S, Sternfeld B, Browner WS. (2000). "Calcification of the aortic arch: risk factors and association with coronary heart disease, stroke, and peripheral vascular disease." Jama283(21): 2810–2815. doi: 10.1001/jama.283.21.2810 10838649

18. Okuno S, Ishimura E, Kitatani K, Fujino Y, Kohno K, Nishizawa Y., et al. (2007). "Presence of Abdominal Aortic Calcification Is Significantly Associated With All-Cause and Cardiovascular Mortality in Maintenance Hemodialysis Patients." American Journal of Kidney Diseases49(3): 417–425. doi: 10.1053/j.ajkd.2006.12.017 17336703

19. Jono S, Shioi A, Ikari Y, Nishizawa Y., et al. (2006). "Vascular calcification in chronic kidney disease." J Bone Miner Metab24(2): 176–181. doi: 10.1007/s00774-005-0668-6 16502129

20. Stoneman VE, Bennett MR. (2004). "Role of apoptosis in atherosclerosis and its therapeutic implications." Clin Sci (Lond)107(4): 343–354.

21. Nishizawa Y, Jono S, Ishimura E, Shioi A., et al. (2005). "Hyperphosphatemia and vascular calcification in end-stage renal disease." J Ren Nutr 15(1): 178–182. doi: 10.1053/j.jrn.2004.09.027 15648030

22. Moradi N, Fadaei R, Emamgholipour S, Kazemian E, Panahi G, Fallah S., et al. (2018). "Association of circulating CTRP9 with soluble adhesion molecules and inflammatory markers in patients with type 2 diabetes mellitus and coronary artery disease." PLoS One13(1): e0192159. doi: 10.1371/journal.pone.0192159 29381773

23. Indolfi C, Torella D, Coppola C, Curcio A, Rodriguez F, Chiariello M., et al. (2002). "Physical training increases eNOS vascular expression and activity and reduces restenosis after balloon angioplasty or arterial stenting in rats." Circ Res91(12): 1190–1197. doi: 10.1161/01.res.0000046233.94299.d6 12480821

24. Iwakura A, Luedemann C, Shastry S, Hanley A, Kearney M, Losordo DW., et al. (2003). "Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury." Circulation108(25): 3115–3121. doi: 10.1161/01.CIR.0000106906.56972.83 14676142

25. Uemura Y, Shibata R, Ohashi K, Enomoto T, Kambara T, Ouchi N., (2013). "Adipose-derived factor CTRP9 attenuates vascular smooth muscle cell proliferation and neointimal formation." Faseb j27(1): 25–33. doi: 10.1096/fj.12-213744 22972916

26. Liu Q, Zhang H, Lin J, Zhang R, Chen S, Yu B., et al. (2017). "C1q/TNF-related protein 9 inhibits the cholesterol-induced Vascular smooth muscle cell phenotype switch and cell dysfunction by activating AMP-dependent kinase." J Cell Mol Med21(11): 2823–2836. doi: 10.1111/jcmm.13196 28524645

27. Meigs JB, Larson MG, D'Agostino RB, Levy D, Clouse ME, O'Donnell CJ., et al. (2002). "Coronary artery calcification in type 2 diabetes and insulin resistance: the framingham offspring study." Diabetes Care25(8): 1313–1319. doi: 10.2337/diacare.25.8.1313 12145227

28. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K., et al. (2006). "Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome." J Clin Invest116(7): 1784–1792. doi: 10.1172/JCI29126 16823476

29. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Kadowaki T., et al. (2007). "Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions." Nat Med13(3): 332–339. doi: 10.1038/nm1557 17268472

30. Zhao L, Zhang JH, Sherchan P, Krafft PR, Zhao W, Tang J., et al. (2019). "Administration of rCTRP9 Attenuates Neuronal Apoptosis Through AdipoR1/PI3K/Akt Signaling Pathway after ICH in Mice." Cell Transplant: 963689718822809.

31. Cheng L, Li B, Chen X, Su J, Wang H, Zheng Q., et al. (2016). "CTRP9 induces mitochondrial biogenesis and protects high glucose-induced endothelial oxidative damage via AdipoR1 -SIRT1- PGC-1alpha activation." Biochem Biophys Res Commun477(4)

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden