Do bumblebees have signatures? Demonstrating the existence of a speed-curvature power law in Bombus terrestris locomotion patterns


Autoři: Laura James aff001;  T. G. Emyr Davies aff001;  Ka S. Lim aff001;  Andrew Reynolds aff001
Působiště autorů: Rothamsted Research, West Common, Harpenden, Hertfordshire, England, United Kingdom aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226393

Souhrn

We report the discovery that Bombus terrestris audax (Buff-tailed bumblebee) locomotor trajectories adhere to a speed-curvature power law relationship which has previously been found in humans, non-human primates and Drosophila larval trajectories. No previous study has reported such a finding in adult insect locomotion. We used behavioural tracking to study walking Bombus terrestris in an arena under different training environments. Trajectories analysed from this tracking show the speed-curvature power law holds robustly at the population level, displaying an exponent close to two-thirds. This exponent corroborates previous findings in human movement patterns, but differs from the three-quarter exponent reported for Drosophila larval locomotion. There are conflicting hypotheses for the principal origin of these speed-curvature laws, ranging from the role of central planning to kinematic and muscular skeletal constraints. Our findings substantiate the latter idea that dynamic power-law effects are robust, differing only through kinematic constraints due to locomotive method. Our research supports the notion that these laws are present in a greater range of species than previously thought, even in the bumblebee. Such power laws may provide optimal behavioural templates for organisms, delivering a potential analytical tool to study deviations from this template. Our results suggest that curvature and angular speed are constrained geometrically, and independently of the muscles and nerves of the performing body.

Klíčová slova:

Bees – Behavior – Biological locomotion – Bumblebees – Curvature – Drosophila melanogaster – Human mobility – Musculoskeletal system


Zdroje

1. Lacquaniti F, Terzuolo C, Viviani P. The law relating the kinematic and figural aspects of drawing movements. Acta Psychol (Amst). 1983;54: 115–130. doi: 10.1016/0001-6918(83)90027-6

2. Gribble PL, Ostry DJ. Origins of the Power Law Relation Between Movement Velocity and Curvature: Modeling; the Effects of Muscle Mechanics and Limb Dynamics. JOURNALOF Neurophysiol. 1996;76. Available: https://www.physiology.org/doi/pdf/10.1152/jn.1996.76.5.2853

3. Wann J, Nimmo-Smith I, Wing AM. Relation between velocity and curvature in movement: Equivalence and divergence between a power law and a minimum-jerk model. J Exp Psychol Hum Percept Perform. 1988;14: 622–637. doi: 10.1037//0096-1523.14.4.622 2974873

4. Flash T, Hochner B. Motor primitives in vertebrates and invertebrates. Curr Opin Neurobiol. 2005;15: 660–666. doi: 10.1016/j.conb.2005.10.011 16275056

5. Gomez-Marin A, Zago M, Lacquaniti F. The speed–curvature power law in Drosophila larval locomotion. Biol Lett. 2016;12. Available: http://dx.doi.org/10.1098/rsbl.2016.0597

6. Ivanenko YP, Grasso R, Macellari V, Lacquaniti F. Two-thirds power law in human locomotion: role of ground contact forces. Neuroreport. 2002;13: 1171–1174. doi: 10.1097/00001756-200207020-00020 12151763

7. de’Sperati C, Viviani P. The Relationship between Curvature and Velocity in Two-Dimensional Smooth Pursuit Eye Movements. J Neurosci. 1997;17: 3931–3945. Available: http://www.jneurosci.org/content/jneuro/17/10/3932.full.pdf

8. Schwartz AB. Direct Cortical Representation of Drawing. Science (80-). 1994;265: 540–542. Available: http://science.sciencemag.org/content/sci/265/5171/540.full.pdf

9. Viviani P, Flash T. Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J Exp Psychol Hum Percept Perform. 1995;21: 32–53. doi: 10.1037//0096-1523.21.1.32 7707032

10. Viviani P, Cenzato M. Segmentation and coupling in complex movements. J Exp Psychol Hum Percept Perform. 1985;11: 828–845. doi: 10.1037//0096-1523.11.6.828 2934511

11. Barabasi A-L. The origin of bursts and heavy tails in human dynamics. Nature. 2005;435: 207–211. doi: 10.1038/nature03459 15889093

12. González MC, Hidalgo CA, Barabási A-L. Understanding individual human mobility patterns. Nature. 2008;453: 779–782. doi: 10.1038/nature06958 18528393

13. Nakamura T, Kiyono K, Yoshiuchi K, Nakahara R, Struzik ZR, Yamamoto Y. Universal Scaling Law in Human Behavioral Organization. Phys Rev Lett. 2007;99: 138103. doi: 10.1103/PhysRevLett.99.138103 17930642

14. Song C, Koren T, Wang P, Barabási A-L. Modelling the scaling properties of human mobility. Nat Phys. 2010;6: 818–823. doi: 10.1038/nphys1760

15. Viswanathan GM. The physics of foraging: an introduction to random searches and biological encounters. Cambridge University Press; 2011.

16. Proekt A, Banavar JR, Maritan A, Pfaff DW. Scale invariance in the dynamics of spontaneous behavior. Proc Natl Acad Sci U S A. 2012;109: 10564–9. doi: 10.1073/pnas.1206894109 22679281

17. Tanaka Y, Ito K, Nakagaki T, Kobayashi R. Mechanics of peristaltic locomotion and role of anchoring. J R Soc Interface. 2012;9: 222–33. doi: 10.1098/rsif.2011.0339 21831891

18. Ofstad TA, Zuker CS, Reiser MB. Visual place learning in Drosophila melanogaster. Nature. 2011;474: 204–7. doi: 10.1038/nature10131 21654803

19. Inger R, Bennie J, Davies TW, Gaston KJ. Potential biological and ecological effects of flickering artificial light. PLoS One. 2014;9: e98631. doi: 10.1371/journal.pone.0098631 24874801

20. Menzel R, Manz G, Menzel R, Greggers U. Massed and spaced learning in honeybees: the role of CS, US, the intertrial interval, and the test interval. Learn Mem. 2001;8: 198–208. doi: 10.1101/lm.40001 11533223

21. Branson K, Robie AA, Bender J, Perona P, Dickinson MH. High-throughput ethomics in large groups of Drosophila. Nat Methods. 2009;6: 451–7. doi: 10.1038/nmeth.1328 19412169

22. Wikipedia. Radius of curvature [Internet]. [cited 5 Feb 2018]. Available: https://en.wikipedia.org/wiki/Radius_of_curvature

23. Stumpf MPH, Porter MA. Critical truths about power laws. www.sciencemag.org Sci. 2012;335. doi: 10.1126/science.1216142 22323807

24. Huh D, Sejnowski TJ. Spectrum of power laws for curved hand movements. Proc Natl Acad Sci U S A. 2015;112: E3950–8. doi: 10.1073/pnas.1510208112 26150514

25. Spanos A. Curve Fitting, the Reliability of Inductive Inference, and the Error‐Statistical Approach. Philos Sci. 2007;74: 1046–1066. doi: 10.1086/525643

26. Reynolds AM, Jones HBC, Hill JK, Pearson AJ, Wilson K, Wolf S, et al. Evidence for a pervasive template in flying and pedestrian insects. R Soc open sci. 2015;2.

27. Massey JT, Lurito JT, Pellizzer G, Georgopoulos AP. Three-dimensional drawings in isometric conditions: relation between geometry and kinematics. Exp Brain Res. 1992;88: 685–690. Available: http://brain.umn.edu/pdfs/JM054.pdf doi: 10.1007/bf00228198 1587327

28. Catavitello G, Ivanenko YP, Lacquaniti F, Viviani P. Drawing ellipses in water: evidence for dynamic constraints in the relation between velocity and path curvature. Exp Brain Res. 2016;234: 1649–1657. doi: 10.1007/s00221-016-4569-9 26838360

29. Gribble PL, Ostry DJ. Origins of the power law relation between movement velocity and curvature: modeling the effects of muscle mechanics and limb dynamics. J Neurophysiol. 1996;76: 2853–2860. doi: 10.1152/jn.1996.76.5.2853 8930238

30. Reynolds AM, Reynolds DR, Sane SP, Hu G, Chapman JW. Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies. Philos Trans R Soc Lond B Biol Sci. 2016;371. doi: 10.1098/rstb.2015.0392 27528782

31. Maoz U, Portugaly E, Flash T, Weiss Y. Noise and the two-thirds power law. Adv Neural Inf Process Syst. 2006; 851–858. Available: https://papers.nips.cc/paper/2874-noise-and-the-two-thirds-power-law.pdf

32. Schaal S, Sternad D. Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements. Exp brain Res. 2001;136: 60–72. Available: http://www.ncbi.nlm.nih.gov/pubmed/11204414 doi: 10.1007/s002210000505 11204414

33. Kuroda S, Kunita I, Tanaka Y, Ishiguro A, Kobayashi R, Nakagaki T. Common mechanics of mode switching in locomotion of limbless and legged animals. J R Soc Interface. 2014;11: 20140205. doi: 10.1098/rsif.2014.0205 24718452

34. Marken RS, Shaffer DM. The power law of movement: an example of a behavioral illusion. Exp Brain Res. 2017;235: 1835–1842. doi: 10.1007/s00221-017-4939-y 28299410

35. Zago M, Matic A, Flash T, Gomez-Marin A, Lacquaniti F. The speed-curvature power law of movements: a reappraisal. Exp Brain Res. 2017; 1–14. doi: 10.1007/s00221-017-5108-z 29071361

36. Muller H, Chittka L. Consistent Interindividual Differences in Discrimination Performance by Bumblebees in Colour, Shape and Odour Learning Tasks (Hymenoptera: Apidae: Bombus terrestris). Entomol Gen. 2012;34. Available: http://chittkalab.sbcs.qmul.ac.uk/2012/Muller_Chittka_12.pdf

37. Thompson DaW. On Growth and Form [Internet]. Bonner JT, editor. Cambridge: Cambridge University Press; 1992. doi: 10.1017/CBO9781107325852

38. Ball P. In retrospect: On Growth and Form. Nature. 2013;494: 32–33. doi: 10.1038/494032a

39. Reynolds A. Liberating Lévy walk research from the shackles of optimal foraging. Phys Life Rev. 2015;14: 59–83. doi: 10.1016/j.plrev.2015.03.002 25835600

40. Viswanathan GM, Peng CK, Stanley HE, Goldberger AL. Deviations from uniform power law scaling in nonstationary time series. Phys Rev E—Stat Physics, Plasmas, Fluids, Relat Interdiscip Top. 1997;55: 845–849. doi: 10.1103/PhysRevE.55.845 11541831


Článek vyšel v časopise

PLOS One


2020 Číslo 1