Influence of gelation on the retention of purple cactus pear extract in microencapsulated double emulsions

Autoři: Paz Robert aff001;  Cristina Vergara aff002;  Andrea Silva-Weiss aff003;  Fernando A. Osorio aff003;  Rocío Santander aff004;  Carmen Sáenz aff005;  Begoña Giménez aff003
Působiště autorů: Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile aff001;  INIA La Platina, Instituto de Investigaciones Agropecuarias, Santiago, Chile aff002;  Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile aff003;  Dpto. de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile aff004;  Dpto. de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227866


A purple cactus pear (Opuntia ficus-indica) extract (CP) was encapsulated in double emulsions (DE) gelled with gelatin (DE-CP-G) and with gelatin and transglutaminase (DE-CP-GT), as well as in a DE with a liquid external aqueous phase (DE-CP), in order to study the retention of betanin as colorant agent. Both gelled DEs showed a predominantly elastic behavior, in contrast with DE-CP. The degradation rate constant of betanin was significantly higher in DE-CP-GT (90.2 x 10−3 days-1) than in DE-CP-G (11.0 x 10−3 days-1) and DE-CP (14.6 x 10−3 days-1) during cold-storage (4 °C). A shift towards yellow color was found in all the systems during cold-storage (4 °C) and after thermal treatment (70°C/30 min), especially in DE-CP-GT, denoting a higher degradation of betanin. Betalamic acid, cyclo-Dopa 5-O-β-glucoside, 17-decarboxy-betanin and neobetanin were identified by UHPLC-MS/MS as degradation products of betanin.

Klíčová slova:

Emulsions – Fats – Oils – Specimen storage – Thermal stability – Vegetable oils – Gelatin – Microencapsulation


1. McClements DJ, Decker EA, Park Y, Weiss J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Rev Food Sci Nutr 2009;4:577–606.

2. Jiménez-Colmenero F. Potential applications of multiple emulsions in the development of healthy and functional foods. Food Res Int 2013,52:64–74.

3. Andrade J, Wright AJ, Corredig M. In vitro digestion behavior of water-in-oil-in-water emulsions with gelled oil-water inner phases. Food Res Int 2018,105:41–51. doi: 10.1016/j.foodres.2017.10.070 29433230

4. Jiménez-Colmenero F, Salcedo-Sandoval L, Bou R, Cofrades S, Herrero AM, Ruiz-Capillas C. Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends Food Sci Technol 2015,44:177–188.

5. Matos M, Gutiérrez G, Martínez-Rey L, Iglesias O, Pazos C. Encapsulation of resveratrol using food-grade concentrated double emulsions: emulsion characterization and rheological behavior. J Food Eng 2018,226:73–81.

6. Surh J, Vladisavljevic GT, Mun S, McClements DJ. Preparation and characterization of water/oil and water/oil/water emulsions containing biopolymer-gelled water droplets. J Agric Food Chem 2007,55:175–184. doi: 10.1021/jf061637q 17199330

7. Dickinson E. Double emulsions stabilized by food biopolymers. Food Biophys 2011,6:1–11.

8. Weiss J, Scherze L, Muschiolik G. Polysaccharide gel with multiple emulsions. Food Hydrocol 2005,19:605–615.

9. Freire M, Bou R, Cofrades S, Jiménez-Colmenero F. Technological characteristics of cold-set gelled double emulsion enriched with n-3 fatty acids: effect of hydroxytyrosol addition and chilling storage. Food Res Int 2017,100:298–305. doi: 10.1016/j.foodres.2017.08.047 28888454

10. Freire M, Cofrades S, Serrano-Casas V, Pintado T, Jiménez MJ, Jiménez-Colmenero F. Gelled double emulsions as delivery systems for hydroxytyrosol and n-3 fatty acids in healthy pork patties. J Food Science Technol 2017,54:3959–3968.

11. Ma L, Wan Z, Yang X. Multiple water-in-oil-in-water emulsions gel based on self-assembled saponin fibrillar network for photosensitive cargo protection. J Agric Food Chem 2017,65:9735–9743. doi: 10.1021/acs.jafc.7b04042 29058905

12. Flaizt L, Freire M, Cofrades S, Mateos R, Weiss J, Jiménez-Colmenero F, et al. Comparison of simple, double and gelled double emulsions as hydroxytyrosol and n-3 fatty acid delivery systems. Food Chem 2016,213:49–57. doi: 10.1016/j.foodchem.2016.06.005 27451154

13. Cofrades S, Bou R, Flaiz L, Garcimartín A, Benedí J, Mateos R, et al. Bioaccessibility of hydroxytyrosol and n-3 fatty acids as affected by the delivery system: simple, double and gelled double emulsion. J Food Sci Technol 2017,54:1785–1793. doi: 10.1007/s13197-017-2604-x 28720933

14. Kukizaki M, Goto M. Preparation and evaluation of uniformly sized solid lipid microcapsules using membrane emulsification. Colloids Surf A Physicochem Eng Asp 2007,293:87–94.

15. Ding S, Serra CA, Vandamme TF, Yu W, Anton N. Double emulsions prepared by two-step emulsification: history, state-of-the-art and perspective. J Control Release 2019,295:31–49. doi: 10.1016/j.jconrel.2018.12.037 30579983

16. Mao LK, Miao S. Structuring food emulsions to improve nutrient delivery during digestion. Food Eng Rev 2015,7:439–451.

17. Yang M, Liu F, Tang C-H. Properties and microstructure of transglutaminase-set soy protein-stabilized emulsion gels. Food Res Int 2013,52:409–418.

18. Esatbeyoglu T, Wagner AE, Schini-Kerth VB, Rimbach G. Betanin—A food colorant with biological activity. Mol Nutr Food Res 2015,59:36–47. doi: 10.1002/mnfr.201400484 25178819

19. Ninfali P, Angelino D. Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 2013,89:188–199. doi: 10.1016/j.fitote.2013.06.004 23751216

20. Sáenz C, Tapia S, Chávez J, Robert P. Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem 2009,114:616–622.

21. Herbach KM, Stintzing FC, Carle R. Betalain stability and degradation-structural and chromatic aspects. J Food Sci 2006,71:R41–R50.

22. Esteves LC, Pinheiro AC, Pioli RM, Penna TC, Baader WJ, Correra TC, et al. Revisiting the mechanism of hydrolysis of betanin. Photochem Photobiol 2018,94:853–864. doi: 10.1111/php.12897 29412460

23. Khan MI. Stabilization of betalains: A review. Food Chem 2016,197:1280–1285. doi: 10.1016/j.foodchem.2015.11.043 26675869

24. Vergara C, Saavedra J, Sáenz C, García P, Robert P. Microencapsulation of pulp and ultrafiltered cactus pear (Opuntia ficus-indica) extracts and betanin stability during storage. Food Chem 2014,157:246–251. doi: 10.1016/j.foodchem.2014.02.037 24679777

25. Kaimainen M, Marze S, Jarvenpaa E, Anton M, Huopalahti R. Encapsulation of betalain into w/o/w double emulsion and release during in vitro intestinal lipid digestion. LWT- Food Sci Technol 2015,60:899–904.

26. Eisinaite V, Juraite D, Schroén K, Leskauskaite D. Food-grade double emulsions as effective fat replacers in meat systems. J Food Eng 2017,213:54–59.

27. Pagano APE, Khalid N, Kobayashi I, Nakajima M, Neves MA, Bastos EL. Microencapsulation of betanin in monodisperse W/O/W emulsions. Food Res Int 2018,109:489–496. doi: 10.1016/j.foodres.2018.04.053 29803475

28. Forni E, Polesello A, Montefiori D, Maestrelli A. High performance liquid chromatographic analysis of the pigments of blood-red prickly pear (Opuntia ficus-indica). J Chromatogr 1992,593:177–183.

29. Fernández-López J, Almela I. Application of high-performance liquid chromatography to the characterization of the betanin pigments prickly pear fruits. J Chromatogr A 2001,913:415–420. doi: 10.1016/s0021-9673(00)01224-3 11355839

30. Stintzing F, Herbach K, Mosshammer M, Carle R, Yi W, Sellappan S, et al. Color, betanin pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem 2005,53:442–451. doi: 10.1021/jf048751y 15656686

31. Silva W, Torres-Gatica MF, Oyarzun-Ampuero F, Silva-Weiss A, Robert P, Cofrades S, et al. Double emulsions as potential fat replacers with gallic acid and quercetin nanoemulsions in the aqueous phases. Food Chem 2018,253:71–78. doi: 10.1016/j.foodchem.2018.01.128 29502846

32. Herbach KM, Stintzing EC, Carle R. Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. J Food Sci 2004,69:C491–C498.

33. Lamba H, Sathish K, Sabikhi L. Double emulsions: emerging delivery system for plant bioactives. Food Bioprocess Tech 2015,8:709–728.

34. McClements DJ. Food emulsions: principles, practices, and techniques / David Julian McClements. (Vol. Third edition.). 2016, Boca Raton: CRC Press.

35. Cofrades S, Antoniou I, Solas MT, Herrero AM, Jiménez-Colmenero F. Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems. Food Chem 2013,141:338–346. doi: 10.1016/j.foodchem.2013.02.097 23768366

36. Bou R, Cofrades S, Jiménez-Colmenero F. Influence of high pressure and heating treatments on physical parameters of water-in-oil-in-water emulsions. Innov Food Sci Emerg Technol 2014,23:1–9.

37. Bou R, Cofrades S, Jiménez-Colmenero F. Physicochemical properties and riboflavin encapsulation in double emulsions with different lipid sources. Food Sci Technol 2014,59:621–628.

38. Ross-Murphy SB. Rheological characterization of gels. J Texture Stud 1995,26:391–400.

39. Herbach KM, Stintzing FC, Carle R. Stability and color changes of thermally treated betanin, phyllocactin, and hylocerenin solutions. J Agric Food Chem 2006,54:390–398. doi: 10.1021/jf051854b 16417295

40. Cai YZ, Sun M, Corke H. Colorant properties and stability of Amaranthus betacyanin pigments. J Agric Food Chem 1998,46:4491–4495.

41. Güneşer O. Pigment and color stability of beetroot betalains in cow milk during thermal treatment. Food Chem 2016,196:220–227. doi: 10.1016/j.foodchem.2015.09.033 26593486

42. Griffin M, Casadio R, Bergamini CR. Transglutaminases: Nature’s biological glues. Biochem 2002,368:377–396.

43. Herbach KM, Stintzing EC, Carle R. Thermal degradation of betacyanins in juices from purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose] monitored by high-performance liquid chromatography–tandem mass spectometric analyses. Eur Food Res Technol 2004,219:377–385.

Článek vyšel v časopise


2020 Číslo 1