Microbiota in foods from Inuit traditional hunting

Autoři: Aviaja L. Hauptmann aff001;  Petronela Paulová aff003;  Lars Hestbjerg Hansen aff005;  Thomas Sicheritz-Pontén aff006;  Gert Mulvad aff001;  Dennis S. Nielsen aff003
Působiště autorů: Greenland Center for Health Research, Ilisimatusarfik—University of Greenland, Nuuk, Greenland aff001;  The Greenland Institute of Natural Resources, Nuuk, Greenland aff002;  Department of Food Science, The University of Copenhagen, Frederiksberg, Denmark aff003;  Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia aff004;  Department of Environmental Science, Aarhus University, Roskilde, Denmark aff005;  Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia aff006;  Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark aff007
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227819


The foods we eat contain microorganisms that we ingest alongside the food. Industrialized food systems offer great advantages from a safety point of view, but have also been accused of depleting the diversity of the human microbiota with negative implications for human health. In contrast, artisanal traditional foods are potential sources of a diverse food microbiota. Traditional foods of the Greenlandic Inuit are comprised of animal-sourced foods prepared in the natural environment and are often consumed raw. These foods, some of which are on the verge of extinction, have not previously been microbiologically characterized. We mapped the microbiota of foods stemming from traditional Inuit land-based hunting activities. The foods included in the current study are dried muskox and caribou meat, caribou rumen and intestinal content as well as larval parasites from caribou hides, all traditional Inuit foods. This study shows that traditional drying methods are efficient for limiting microbial growth through desiccation. The results also show the rumen content of the caribou to be a highly diverse source of microbes with potential for degradation of plants. Finally, a number of parasites were shown to be included in the biodiversity of the assessed traditional foods. Taken together, the results map out a diverse source of ingested microbes and parasites that originate from the natural environment. These results have implications for understanding the nature-sourced traditional Inuit diet, which is in contrast to current day diet recommendations as well as modern industrialized food systems.

Klíčová slova:

Diet – Food – Gastrointestinal tract – Larvae – Meat – Microbiome – Reindeer – Inuit people


1. Jarvis KG, Daquigan N, White JR, Morin PM, Howard LM, Manetas JE, et al. Microbiomes Associated With Foods From Plant and Animal Sources. Front Microbiol. 2018;9: 1–13. doi: 10.3389/fmicb.2018.00001

2. Rizo J, Guillén D, Farrés A, Díaz-Ruiz G, Sánchez S, Wacher C, et al. Omics in traditional vegetable fermented foods and beverages. Crit Rev Food Sci Nutr. 2018;Dec 22: 1–19. doi: 10.1080/10408398.2018.1551189 30582346

3. Wolfe BE, Dutton RJ. Towards an Ecosystem Approach to Cheese Microbiology. Microbiol Spectr. 2013;1: CM-0012–2012. doi: 10.1128/microbiolspec.CM-0012-2012.Correspondence

4. Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front Microbiol. 2017;8: 1–16. doi: 10.3389/fmicb.2017.00001

5. Lang JM, Eisen JA, Zivkovic AM. The microbes we eat: abundance and taxonomy of microbes consumed in a day’s worth of meals for three diet types. PeerJ. 2014;2: e659. doi: 10.7717/peerj.659 25538865

6. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505: 559–563. doi: 10.1038/nature12820 24336217

7. Rizo J, Guillén D, Farrés A, Díaz-Ruiz G, Sánchez S, Wacher C, et al. Omics in traditional vegetable fermented foods and beverages. Crit Rev Food Sci Nutr. 2018. doi: 10.1080/10408398.2018.1551189 30582346

8. Courage KH. Cultured How Ancient Foods Can Feed Our Microbiome. Avery; 2019.

9. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Collini S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010;107: 14691–14696. doi: 10.1073/pnas.1005963107 20679230

10. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5. doi: 10.1038/ncomms4654 24736369

11. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun. 2015;6. doi: 10.1038/ncomms7505 25807110

12. WHO. Healthy diet. 2018. Available: https://www.who.int/news-room/fact-sheets/detail/healthy-diet

13. Berthelsen A. Meddelelser om Grønland bind 117. Kommissionen for videnskabelige undersøgelser i Grønland, editor. C. A. Reitzels Forlag; 1935.

14. Birket-Smith K. Eskimos. Rhodos; 1971.

15. Larsen F, Oldenburg R. Food in Southern Greenland for 1000 Years. Hovedland; 2000.

16. Pars T, Osler M, Bjerregaard P. Contemporary use of traditional and imported food among Greenlandic Inuit. Arctic. 2001;54: 22–31. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-0035026669&partnerID=40&md5=9f6ef81c147cd2c647494e467207a8ea

17. Helms P. Ernæringsforskning i Grønland. Tidsskr Grønl. 1986;5.

18. Helms P. Forskellen mellem kosten for en fanger af 1936 og manden af i dag. Atuisoq. 1988;4: 7–8.

19. Kuhnlein H V, Erasmus B, Spigelski D. Indigenous People’s food systems. FAO Centre for Indigenous Peoples’ Nutrition and Environment; 2009.

20. Binford LR. Nunamiut Ethnoarchaeology. New York: Academic Press Inc.; 1978.

21. DHSS. Nutrition Fact Sheet Series: Inuit Traditional Foods. 2005.

22. Ferreira MP, Cuerrier A, Giroux M, Norton CH. Insect Consumption in the Arctic. In: Halloran A et al., editor. Edible Insects in Sustainable Food Systems. Springer International Publishing AG; 2018. pp. 19–33.

23. Salgado-Flores A, Hagen LH, Ishaq SL, Zamanzadeh M, Wright A-DG, Pope PB, et al. Rumen and Cecum Microbiomes in Reindeer (Rangifer tarandus tarandus) Are Changed in Response to a Lichen Diet and May Affect Enteric Methane Emissions. PLoS One. 2016;11: e0155213. doi: 10.1371/journal.pone.0155213 27159387

24. Ilina L, Filippova V, Dubrovin A, Yildirim E, Dunyashev T, Laptev G, et al. The rumen bacterial community of reindeer in different age periods from Russian Arctic regions. Agric Sci. 2018;2: 125–129. doi: 10.22616/rrd.24.2018.062

25. Hansen KK, Sundset MA, Folkow LP, Nilsen M, Mathiesen SD. Methane emissions are lower from reindeer fed lichens compared to a concentrate feed. Polar Res. 2018;37: 1–10. doi: 10.1080/17518369.2018.1505396

26. GINR. Caribou. [cited 1 Apr 2019]. Available: http://www.natur.gl/en/birds-and-mammals/terrestrial-mammals/caribou-reindeer/

27. GINR. Muskoxen. [cited 1 Apr 2019]. Available: http://www.natur.gl/en/birds-and-mammals/terrestrial-mammals/muskoxen/

28. Odgaard U. Rensdyrjagt og etik i Vestgrønland—et spørgsmål om balance. Tidsskr Grønl. 2019;1.

29. Krych Ł, Kot W,. Bendtsen KMB, Hansen AK, Vogensen FK, Nielsen DS. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR. J Microbiol Methods. 2018;144: 1–7. doi: 10.1016/j.mimet.2017.10.015 29107603

30. Villalobo E, Torres A. PCR for Detection of Shigella spp. in Mayonnaise. Appl Environ Microbiol. 1998;64: 1242–45. 9546158

31. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. Sequence analysis UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27: 2194–2200. doi: 10.1093/bioinformatics/btr381 21700674

32. Patel RK, Jain M. NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data. PLoS One. 2012;7: e30619–e30619. doi: 10.1371/journal.pone.0030619 22312429

33. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42: D633–D642. doi: 10.1093/nar/gkt1244 24288368

34. “R Core Team.” R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. Available: https://www.r-project.org/

35. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5–1. 2018. Available: https://cran.r-project.org/package=vegan

36. Roberts DW. labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.8–0. 2016.

37. DMI. Danish Meteorological Institute Weather Archive. 2019 [cited 11 Feb 2019]. Available: https://www.dmi.dk/vejrarkiv/

38. Jay JM. Modern Food Microbiology. Fourth. New York: Chapman & Hall; 1992.

39. Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of tw. Int J Syst Evol Microbiol. 1995;45: 755–61.

40. Satomi M, Oikawa H, Yano Y. Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol. 2003;53: 491–499. doi: 10.1099/ijs.0.02392-0 12710618

41. Kim J-Y, Yoo H-S, Lee D-H, Park S-H, Kim Y-J, Oh D-C. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae. Int J Syst Evol Microbiol. 2016;66: 2218–2224. doi: 10.1099/ijsem.0.001014 26962005

42. Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, et al. Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns. Cell Rep. 2016;14: 2142–2153. doi: 10.1016/j.celrep.2016.02.013 26923597

43. Birket-Smith K. Ethnography of the Egedesminde District. Meddelelser om Grønl. 1924;66: 380.

44. Freuchen P. Storfanger. Hasselbalch; 1927.

45. Raundrup K, Al-Sabi MNS, Kapel CMO. First record of Taenia ovis krabbei muscle cysts in muskoxen from Greenland. Vet Parasitol. 2012;184: 356–358. doi: 10.1016/j.vetpar.2011.09.010 21955737

46. Palmer SR, Soulby L, Simpson DIH. Zoonoses. Biology, Clin- ical Practice, and Public Health Control. New York: Oxford University Press; 1998. p. 948.

47. Kämpfer P, Matthews H, Glaeser SP, Martin K, Lodders N, Faye I. Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. 2011;61: 2670–2675. doi: 10.1099/ijs.0.026393-0 21169462

48. Vasilyeva L V, Omelchenko M V, Berestovskaya YY, Lysenko AM, Abraham W-R, Dedysh SN, et al. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil. Int J Syst Evol Microbiol. 2006; 2083–2088. doi: 10.1099/ijs.0.64122-0 16957103

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden