#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Impact of early-onset persistent stunting on cognitive development at 5 years of age: Results from a multi-country cohort study


Autoři: Md Ashraful Alam aff001;  Stephanie A. Richard aff002;  Shah Mohammad Fahim aff001;  Mustafa Mahfuz aff001;  Baitun Nahar aff001;  Subhasish Das aff001;  Binod Shrestha aff003;  Beena Koshy aff004;  Estomih Mduma aff005;  Jessica C. Seidman aff002;  Laura E. Murray-Kolb aff006;  Laura E. Caulfield aff007;  Tahmeed Ahmed aff001
Působiště autorů: icddr,b, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, Bangladesh aff001;  Fogarty International Center/National Institutes of Health, Bethesda, MD, United States of America aff002;  Water Reed/AFRIMS Research Unit Nepal (WARUN), Kathmandu, Nepal aff003;  Christian Medical College, Vellore, India aff004;  Haydom Lutheran Hospital, Haydom, Tanzania aff005;  The Pennsylvania State University, University Park, PA, United States of America aff006;  The Johns Hopkins University, Baltimore, MD, United States of America aff007
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227839

Souhrn

Background

Globally more than 150 million children under age 5 years were stunted in 2018, primarily in low- and middle-income countries (LMICs), and the impact of early-onset, persistent stunting has not been well explored. To explore the association between early-onset persistent stunting in children and cognitive development at 5 years of age, and to identify the factors associated with early-onset stunting.

Methods and findings

Children from the MAL-ED cohort study were followed from birth to 5 years of age in six LMICs. The Wechsler Preschool Primary Scales of Intelligence (WPPSI) was used to assess cognitive abilities (fluid reasoning) at 5 years and was adapted for each culture. Stunting was categorized as early-onset persistent (first stunted at 1–6 months and persisting at 60 months), early-onset recovered (first stunted at 1–6 months and not stunted at 60 months), late-onset persistent (first stunted at 7–24 months and persisting at 60 months), late-onset recovered (first stunted at 7–24 months and not stunted at 60 months), and never (never stunted). Mixed effects linear models were used to estimate the relationship between stunting status and cognitive development. Children with early-onset persistent stunting had significantly lower cognitive scores (-2.10 (95% CI: -3.85, -0.35)) compared with those who were never stunted. Transferrin receptor (TfR) was also negatively associated with cognitive development (-0.31 (95% CI: -0.49, -0.13)), while the HOME inventory, an index of quality of the home environment (0.46 (95% CI: 0.21, 0.72)) and socio-economic status (1.50 (95% CI: 1.03, 1.98)) were positively associated with cognitive development.

Conclusions

Early-onset persistent stunting was associated with lower cognitive development in children at 5 years of age in this cohort of children.

Klíčová slova:

Birth weight – Breast feeding – Cognitive impairment – Cohort studies – Children – Inflammation – Sanitation – Socioeconomic aspects of health


Zdroje

1. Gottfredson LS. Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Citeseer; 1997.

2. Organization WH. World health statistics 2016: monitoring health for the SDGs sustainable development goals: World Health Organization; 2016.

3. Black MM, Walker SP, Fernald LC, Andersen CT, DiGirolamo AM, Lu C, et al. Early childhood development coming of age: science through the life course. The Lancet. 2017;389(10064):77–90.

4. Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B, et al. Developmental potential in the first 5 years for children in developing countries. The lancet. 2007;369(9555):60–70.

5. Naudeau S, Kataoka N, Valerio A, Neuman MJ, Elder LK. Investing in young children: An early childhood development guide for policy dialogue and project preparation: The World Bank; 2010.

6. Fanzo J, Hawkes C, Udomkesmalee E, Afshin A, Allemandi L, Assery O, et al. 2018 Global Nutrition Report: Shining a light to spur action on nutrition. 2018.

7. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. The lancet. 2013;382(9890):427–51.

8. Chang SM, Walker SP, Grantham-McGregor S, Powell CA. Early childhood stunting and later behaviour and school achievement. J Child Psychol Psychiatry. 2002;43(6):775–83. doi: 10.1111/1469-7610.00088 12236612.

9. Dewey KG, Begum K. Long‐term consequences of stunting in early life. Maternal & child nutrition. 2011;7(s3):5–18.

10. Walker SP, Chang SM, Powell CA, Simonoff E, Grantham-McGregor SM. Early childhood stunting is associated with poor psychological functioning in late adolescence and effects are reduced by psychosocial stimulation. The Journal of nutrition. 2007;137(11):2464–9. doi: 10.1093/jn/137.11.2464 17951486

11. UNICEF. Levels and trends in child malnutrition. Joint child malnutrition estimates. 2012.

12. Mendez MA, Adair LS. Severity and timing of stunting in the first two years of life affect performance on cognitive tests in late childhood. The Journal of nutrition. 1999;129(8):1555–62. doi: 10.1093/jn/129.8.1555 10419990

13. Sokolovic N, Selvam S, Srinivasan K, Thankachan P, Kurpad A, Thomas T. Catch-up growth does not associate with cognitive development in Indian school-age children. European journal of clinical nutrition. 2014;68(1):14. doi: 10.1038/ejcn.2013.208 24169458

14. Casale D, Desmond C. Recovery from stunting and cognitive outcomes in young children: evidence from the South African Birth to Twenty Cohort Study. Journal of developmental origins of health and disease. 2016;7(2):163–71. doi: 10.1017/S2040174415007175 26399543

15. Ocansey ME, Adu‐Afarwuah S, Kumordzie SM, Okronipa H, Young RR, Tamakloe SM, et al. The association of early linear growth and haemoglobin concentration with later cognitive, motor, and social–emotional development at preschool age in Ghana. Maternal & child nutrition. 2019:e12834.

16. Sudfeld CR, McCoy DC, Danaei G, Fink G, Ezzati M, Andrews KG, et al. Linear growth and child development in low-and middle-income countries: a meta-analysis. Pediatrics. 2015;135(5):e1266–e75. doi: 10.1542/peds.2014-3111 25847806

17. Cheung Y, Ashorn P. Continuation of linear growth failure and its association with cognitive ability are not dependent on initial length‐for‐age: a longitudinal study from 6 months to 11 years of age. Acta Pædiatrica. 2010;99(11):1719–23. doi: 10.1111/j.1651-2227.2009.01593.x 19912141

18. Pongcharoen T, Ramakrishnan U, DiGirolamo AM, Winichagoon P, Flores R, Singkhornard J, et al. Influence of prenatal and postnatal growth on intellectual functioning in school-aged children. Archives of pediatrics & adolescent medicine. 2012;166(5):411–6.

19. Crookston BT, Schott W, Cueto S, Dearden KA, Engle P, Georgiadis A, et al. Postinfancy growth, schooling, and cognitive achievement: Young Lives. The American journal of clinical nutrition. 2013;98(6):1555–63. doi: 10.3945/ajcn.113.067561 24067665

20. Adair LS, Fall CH, Osmond C, Stein AD, Martorell R, Ramirez-Zea M, et al. Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: findings from five birth cohort studies. The Lancet. 2013;382(9891):525–34.

21. Kowalski AJ, Georgiadis A, Behrman JR, Crookston BT, Fernald LC, Stein AD. Linear growth through 12 years is weakly but consistently associated with language and math achievement scores at age 12 years in 4 low-or middle-income countries. The Journal of nutrition. 2018;148(11):1852–9. doi: 10.1093/jn/nxy191 30383284

22. Gandhi M, Ashorn P, Maleta K, Teivaanmäki T, Duan X, Cheung YB. Height gain during early childhood is an important predictor of schooling and mathematics ability outcomes. Acta Paediatrica. 2011;100(8):1113–8. doi: 10.1111/j.1651-2227.2011.02254.x 21366692

23. Fink G, Rockers PC. Childhood growth, schooling, and cognitive development: further evidence from the Young Lives study. The American journal of clinical nutrition. 2014;100(1):182–8. doi: 10.3945/ajcn.113.080960 24808488

24. Teivaanmäki T, Bun Cheung Y, Pulakka A, Virkkala J, Maleta K, Ashorn P. Height gain after two‐years‐of‐age is associated with better cognitive capacity, measured with Raven's coloured matrices at 15‐years‐of‐age in Malawi. Maternal & child nutrition. 2017;13(2):e12326.

25. Investigators M-EN. The malnutrition and enteric disease study (MAL-ED): understanding the consequences for child health and development. Clin Infect Dis. 2014;59:S193Á330.

26. Investigators M-EN. Early childhood cognitive development is affected by interactions among illness, diet, enteropathogens and the home environment: findings from the MAL-ED birth cohort study. BMJ global health. 2018;3(4):e000752. doi: 10.1136/bmjgh-2018-000752 30058645

27. Investigators M-EN. Relationship between growth and illness, enteropathogens and dietary intakes in the first 2 years of life: findings from the MAL-ED birth cohort study. BMJ global health. 2017;2(4):e000370. doi: 10.1136/bmjgh-2017-000370 29333282

28. Investigators M-EN. Childhood stunting in relation to the pre-and postnatal environment during the first 2 years of life: The MAL-ED longitudinal birth cohort study. PLoS medicine. 2017;14(10):e1002408. doi: 10.1371/journal.pmed.1002408 29069076

29. Ahmed T, Mahfuz M, Islam MM, Mondal D, Hossain MI, Ahmed AS, et al. The MAL-ED cohort study in Mirpur, Bangladesh. Clinical Infectious Diseases. 2014;59(suppl_4):S280–S6.

30. Lima AA, Oriá RB, Soares AM, Filho JQ, de Sousa F Jr, Abreu CB, et al. Geography, population, demography, socioeconomic, anthropometry, and environmental status in the MAL-ED cohort and case-control study sites in Fortaleza, Ceará, Brazil. Clinical Infectious Diseases. 2014;59(suppl_4):S287–S94.

31. John SM, Thomas RJ, Kaki S, Sharma SL, Ramanujam K, Raghava MV, et al. Establishment of the MAL-ED birth cohort study site in Vellore, southern India. Clinical Infectious Diseases. 2014;59(suppl_4):S295–S9.

32. Shrestha PS, Shrestha SK, Bodhidatta L, Strand T, Shrestha B, Shrestha R, et al. Bhaktapur, Nepal: the MAL-ED birth cohort study in Nepal. Clinical Infectious Diseases. 2014;59(suppl_4):S300–S3.

33. Turab A, Soofi SB, Ahmed I, Bhatti Z, Zaidi AK, Bhutta ZA. Demographic, socioeconomic, and health characteristics of the MAL-ED network study site in rural Pakistan. Clinical Infectious Diseases. 2014;59(suppl_4):S304–S9.

34. Yori PP, Lee G, Olórtegui MP, Chávez CB, Flores JT, Vasquez AO, et al. Santa Clara de Nanay: the MAL-ED cohort in Peru. Clinical Infectious Diseases. 2014;59(suppl_4):S310–S6.

35. Bessong PO, Nyathi E, Mahopo TC, Netshandama V. Development of the Dzimauli community in Vhembe District, Limpopo province of South Africa, for the MAL-ED cohort study. Clinical Infectious Diseases. 2014;59(suppl_4):S317–S24.

36. Mduma ER, Gratz J, Patil C, Matson K, Dakay M, Liu S, et al. The etiology, risk factors, and interactions of enteric infections and malnutrition and the consequences for child health and development study (MAL-ED): description of the Tanzanian site. Clinical Infectious Diseases. 2014;59(suppl_4):S325–S30.

37. McCormick BJJ, Richard SA, Caulfield LE, Pendergast LL, Seidman JC, Koshy B, et al. Early Life Child Micronutrient Status, Maternal Reasoning, and a Nurturing Household Environment have Persistent Influences on Child Cognitive Development at Age 5 years: Results from MAL-ED. The Journal of Nutrition. 2019. doi: 10.1093/jn/nxz055 31162601

38. Wechsler D. The Weschler Preschool and Primary Scales of Intelligence-III—Third Edition (WPPSI–III). San Antonio, TX: Psychological Corporation. 2002.

39. Ruan-Iu L, Pendergast LL, Rasheed M, Tofail F, Svensen E, Maphula A, et al. Assessing Early Childhood Fluid Reasoning in Low-and Middle-Income Nations: Validity of the Wechsler Preschool and Primary Scale of Intelligence Across Seven MAL-ED Sites. Journal of Psychoeducational Assessment. 2019:0734282919850040.

40. Cattell RB. Intelligence: Its structure, growth and action: Elsevier; 1987.

41. Tucker WH. The Cattell controversy: Race, science, and ideology: University of Illinois Press; 2010.

42. De Onis M. WHO child growth standards: head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development: World Health Organization; 2007.

43. Psaki SR, Seidman JC, Miller M, Gottlieb M, Bhutta ZA, Ahmed T, et al. Measuring socioeconomic status in multicountry studies: results from the eight-country MAL-ED study. Population health metrics. 2014;12(1):8. doi: 10.1186/1478-7954-12-8 24656134

44. Jones PC, Pendergast LL, Schaefer BA, Rasheed M, Svensen E, Scharf R, et al. Measuring home environments across cultures: Invariance of the HOME scale across eight international sites from the MAL-ED study. Journal of school psychology. 2017;64:109–27. doi: 10.1016/j.jsp.2017.06.001 28735604

45. Richard SA, Barrett LJ, Guerrant RL, Checkley W, Miller MA. Disease surveillance methods used in the 8-site MAL-ED cohort study. Clinical Infectious Diseases. 2014;59(suppl_4):S220–S4.

46. Ambikapathi R, Kosek MN, Lee GO, Mahopo C, Patil CL, Maciel BL, et al. How multiple episodes of exclusive breastfeeding impact estimates of exclusive breastfeeding duration: report from the eight‐site MAL‐ED birth cohort study. Maternal & child nutrition. 2016;12(4):740–56.

47. Nkrumah B, Nguah SB, Sarpong N, Dekker D, Idriss A, May J, et al. Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting. BMC clinical pathology. 2011;11(1):5.

48. Namaste SM, Aaron GJ, Varadhan R, Peerson JM, Suchdev PS. Methodologic approach for the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. The American journal of clinical nutrition. 2017;106(suppl_1):333S–47S. doi: 10.3945/ajcn.116.142273 28615254

49. Richard SA, McCormick BJ, Murray-Kolb LE, Lee GO, Seidman JC, Mahfuz M, et al. Enteric dysfunction and other factors associated with attained size at 5 years: MAL-ED birth cohort study findings. The American journal of clinical nutrition. 2019.

50. Platts-Mills JA, McCormick BJ, Kosek M, Pan WK, Checkley W, Houpt ER. Methods of analysis of enteropathogen infection in the MAL-ED Cohort Study. Clinical Infectious Diseases. 2014;59(suppl_4):S233–S8.

51. McCormick BJ, Lee GO, Seidman JC, Haque R, Mondal D, Quetz J, et al. Dynamics and trends in fecal biomarkers of gut function in children from 1–24 months in the MAL-ED study. The American journal of tropical medicine and hygiene. 2017;96(2):465–72. doi: 10.4269/ajtmh.16-0496 27994110

52. Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models. Journal of the American statistical Association. 1993;88(421):9–25.

53. Crookston BT, Dearden KA, Alder SC, Porucznik CA, Stanford JB, Merrill RM, et al. Impact of early and concurrent stunting on cognition. Maternal & Child Nutrition. 2011;7(4):397–409.

54. Berkman DS, Lescano AG, Gilman RH, Lopez SL, Black MM. Effects of stunting, diarrhoeal disease, and parasitic infection during infancy on cognition in late childhood: a follow-up study. The Lancet. 2002;359(9306):564–71.

55. Lozoff B, Jimenez E, Wolf AW. Long-term developmental outcome of infants with iron deficiency. New England journal of medicine. 1991;325(10):687–94. doi: 10.1056/NEJM199109053251004 1870641

56. Algarin C, Karunakaran KD, Reyes S, Morales C, Lozoff B, Peirano P, et al. Differences on brain connectivity in adulthood are present in subjects with iron deficiency anemia in infancy. Frontiers in aging neuroscience. 2017;9:54. doi: 10.3389/fnagi.2017.00054 28326037

57. Northrop-Clewes C. The interpretation of indicators of iron status during an acute phase response. WHO/CDC Assessing the iron status of populations: report of a joint World Health Organization/Centers for Disease Control and Prevention technical consultation on the assessment of iron status at the population level Geneva: World Health Organization. 2007.

58. Zamora TG, Guiang 3rd SF, Widness JA, Georgieff MK. Iron is prioritized to red blood cells over the brain in phlebotomized anemic newborn lambs. Pediatric research. 2016;79(6):922. doi: 10.1038/pr.2016.20 26866907

59. Ronfani L, Brumatti LV, Mariuz M, Tognin V, Bin M, Ferluga V, et al. The complex interaction between home environment, socioeconomic status, maternal IQ and early child neurocognitive development: a multivariate analysis of data collected in a newborn cohort study. PLoS One. 2015;10(5):e0127052. doi: 10.1371/journal.pone.0127052 25996934

60. Contreras D, González S. Determinants of early child development in Chile: Health, cognitive and demographic factors. International Journal of Educational Development. 2015;40:217–30.

61. Hackman DA, Farah MJ, Meaney MJ. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nature reviews neuroscience. 2010;11(9):651. doi: 10.1038/nrn2897 20725096

62. Neisser U, Boodoo G, Bouchard TJ Jr, Boykin AW, Brody N, Ceci SJ, et al. Intelligence: Knowns and unknowns. American psychologist. 1996;51(2):77.

63. Duncan GJ, Brooks‐Gunn J. Family poverty, welfare reform, and child development. Child development. 2000;71(1):188–96. doi: 10.1111/1467-8624.00133 10836573

64. Linver MR, Brooks-Gunn J, Kohen DE. Family processes as pathways from income to young children's development. Developmental psychology. 2002;38(5):719. 12220050

65. Wamani H, Åstrøm AN, Peterson S, Tumwine JK, Tylleskär T. Boys are more stunted than girls in sub-Saharan Africa: a meta-analysis of 16 demographic and health surveys. BMC pediatrics. 2007;7(1):17.

66. Cronk L. Low Socioeconomic Status and Female‐Biased Parental Investment: The Mukogodo Example. American Anthropologist. 1989;91(2):414–29.

67. Akombi BJ, Agho KE, Hall JJ, Merom D, Astell-Burt T, Renzaho AM. Stunting and severe stunting among children under-5 years in Nigeria: A multilevel analysis. BMC pediatrics. 2017;17(1):15. doi: 10.1186/s12887-016-0770-z 28086835

68. Kavosi E, Rostami ZH, Kavosi Z, Nasihatkon A, Moghadami M, Heidari M. Prevalence and determinants of under-nutrition among children under six: a cross-sectional survey in Fars province, Iran. International journal of health policy and management. 2014;3(2):71. doi: 10.15171/ijhpm.2014.63 25114945

69. Nkurunziza S, Meessen B, Korachais C. Determinants of stunting and severe stunting among Burundian children aged 6–23 months: evidence from a national cross-sectional household survey, 2014. BMC pediatrics. 2017;17(1):176. doi: 10.1186/s12887-017-0929-2 28743238

70. Tiwari R, Ausman LM, Agho KE. Determinants of stunting and severe stunting among under-fives: evidence from the 2011 Nepal Demographic and Health Survey. BMC pediatrics. 2014;14(1):239.

71. Chirande L, Charwe D, Mbwana H, Victor R, Kimboka S, Issaka AI, et al. Determinants of stunting and severe stunting among under-fives in Tanzania: evidence from the 2010 cross-sectional household survey. BMC pediatrics. 2015;15(1):165.

72. Padonou G, Le Port A, Cottrell G, Guerra J, Choudat I, Rachas A, et al. Factors associated with growth patterns from birth to 18 months in a Beninese cohort of children. Acta tropica. 2014;135:1–9. doi: 10.1016/j.actatropica.2014.03.005 24674879

73. Alam MA, Mahfuz M, Islam MM, Mondal D, Ahmed A, Haque R, et al. Contextual factors for stunting among children of age 6 to 24 months in an under-privileged community of Dhaka, Bangladesh. Indian pediatrics. 2017;54(5):373–6. doi: 10.1007/s13312-017-1109-z 28368267

74. Mohsena M, Mascie-Taylor CN, Goto R. Association between socio-economic status and childhood undernutrition in Bangladesh; a comparison of possession score and poverty index. Public health nutrition. 2010;13(10):1498–504. doi: 10.1017/S1368980010001758 20576197

75. Kamal S. Socio-economic determinants of severe and moderate stunting among under-five children of rural Bangladesh. Malaysian journal of nutrition. 2011;17(1).

76. Ízaltin E, Hill K, Subramanian S. Association of maternal stature with offspring mortality, underweight, and stunting in low-to middle-income countries. Jama. 2010;303(15):1507–16. doi: 10.1001/jama.2010.450 20407060

77. Addo OY, Stein AD, Fall CH, Gigante DP, Guntupalli AM, Horta BL, et al. Maternal height and child growth patterns. The Journal of pediatrics. 2013;163(2):549–54. e1. doi: 10.1016/j.jpeds.2013.02.002 23477997


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#