Post-weaning infant-to-mother bonding in nutritionally independent female mice


Autoři: Stijn Stroobants aff001;  John Creemers aff003;  Guy Bosmans aff004;  Rudi D’Hooge aff001
Působiště autorů: Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium aff001;  mINT Behavioral Phenotyping Facility, KU Leuven, Leuven, Belgium aff002;  Laboratory of Biochemical Neuroendocrinology, KU Leuven, Leuven, Belgium aff003;  Parenting and Special Education Research Unit, KU Leuven, Leuven, Belgium aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227034

Souhrn

Infant-parent attachment is highly selective and continues beyond essential care in primates, most prominently in humans, and the quality of this attachment crucially determines cognitive and emotional development of the infant. Altricial rodent species such as mice (Mus musculus) display mutual recognition and communal nursing in wild and laboratory environments, but parental bonding beyond the nursing period has not been reported. We presently demonstrated that socially and nutritionally independent mice still prefer to interact selectively with their mother dam. Furthermore, we observed gender differences in the mother-infant relationship, and showed disruption of this relationship in haploinsufficient Nbea+/- mice, a putative autism model with neuroendocrine dysregulation. To our knowledge, this is the first observation of murine infant-to-mother bonding beyond the nursing period.

Klíčová slova:

Animal behavior – Autism spectrum disorder – Behavior – Infants – Mice – Mothers – Mouse models – Parenting behavior


Zdroje

1. Bowlby J. Attachment and loss: Vol. 1. Attachment. New York, NY: Basic Books; 1969.

2. McCrory E, De Brito SA, Viding E. The link between child abuse and psychopathology: a review of neurobiological and genetic research. Journal of the Royal Society of Medicine. 2012;105(4):151–6. Epub 2012/04/26. doi: 10.1258/jrsm.2011.110222 22532655; PubMed Central PMCID: PMC3343716.

3. Esposito G, Setoh P, Shinohara K, Bornstein MH. The development of attachment: Integrating genes, brain, behavior, and environment. Behavioural brain research. 2017;325(Pt B):87–9. Epub 2017/03/23. doi: 10.1016/j.bbr.2017.03.025 28322913; PubMed Central PMCID: PMC5860659.

4. Lucion AB, Bortolini MC. Mother-pup interactions: rodents and humans. Frontiers in endocrinology. 2014;5:17. Epub 2014/03/13. doi: 10.3389/fendo.2014.00017 24616713; PubMed Central PMCID: PMC3935307.

5. Kikusui T, Isaka Y, Mori Y. Early weaning deprives mouse pups of maternal care and decreases their maternal behavior in adulthood. Behavioural brain research. 2005;162(2):200–6. Epub 2005/06/23. doi: 10.1016/j.bbr.2005.03.013 15970216.

6. Curley JP, Jordan ER, Swaney WT, Izraelit A, Kammel S, Champagne FA. The meaning of weaning: influence of the weaning period on behavioral development in mice. Developmental neuroscience. 2009;31(4):318–31. Epub 2009/06/24. doi: 10.1159/000216543 19546569; PubMed Central PMCID: PMC2820580.

7. Gubernick DJ. Parent and infant attachment in mammals. In Gubernick DJ, Knopfler PH, editors. Parental care in mammals. Boston, MA: Springer; 1981. pp. 243–305.

8. Stoesz BM, Hare JF, Snow WM. Neurophysiological mechanisms underlying affiliative social behavior: insights from comparative research. Neuroscience and biobehavioral reviews. 2013;37(2):123–32. Epub 2012/11/28. doi: 10.1016/j.neubiorev.2012.11.007 23182913.

9. Kikusui T, Mori Y. Behavioural and neurochemical consequences of early weaning in rodents. Journal of neuroendocrinology. 2009;21(4):427–31. Epub 2009/02/12. doi: 10.1111/j.1365-2826.2009.01837.x 19207810.

10. Tractenberg SG, Levandowski ML, de Azeredo LA, Orso R, Roithmann LG, Hoffmann ES, et al. An overview of maternal separation effects on behavioural outcomes in mice: Evidence from a four-stage methodological systematic review. Neuroscience and biobehavioral reviews. 2016;68:489–503. Epub 2016/06/23. doi: 10.1016/j.neubiorev.2016.06.021 27328784.

11. Curley JP, Champagne FA. Influence of maternal care on the developing brain: Mechanisms, temporal dynamics and sensitive periods. Frontiers in neuroendocrinology. 2016;40:52–66. Epub 2015/12/01. doi: 10.1016/j.yfrne.2015.11.001 26616341; PubMed Central PMCID: PMC4783284.

12. Landers MS, Sullivan RM. The development and neurobiology of infant attachment and fear. Developmental neuroscience. 2012;34(2–3):101–14. Epub 2012/05/11. doi: 10.1159/000336732 22571921; PubMed Central PMCID: PMC3593124.

13. Wang L, Jiao J, Dulawa SC. Infant maternal separation impairs adult cognitive performance in BALB/cJ mice. Psychopharmacology. 2011;216(2):207–18. Epub 2011/02/19. doi: 10.1007/s00213-011-2209-4 21331521.

14. Chocyk A, Przyborowska A, Makuch W, Majcher-Maslanka I, Dudys D, Wedzony K. The effects of early-life adversity on fear memories in adolescent rats and their persistence into adulthood. Behavioural brain research. 2014;264:161–72. Epub 2014/02/11. doi: 10.1016/j.bbr.2014.01.040 24508235.

15. Nishi M, Horii-Hayashi N, Sasagawa T. Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Frontiers in neuroscience. 2014;8:166. Epub 2014/07/06. doi: 10.3389/fnins.2014.00166 24987328; PubMed Central PMCID: PMC4060417.

16. Lee JH, Kim HJ, Kim JG, Ryu V, Kim BT, Kang DW, et al. Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neuroscience research. 2007;58(1):32–9. Epub 2007/02/15. doi: 10.1016/j.neures.2007.01.008 17298851.

17. Shin SY, Han SH, Woo RS, Jang SH, Min SS. Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation. Neuroscience. 2016;316:221–31. Epub 2016/01/07. doi: 10.1016/j.neuroscience.2015.12.041 26733385.

18. Aisa B, Tordera R, Lasheras B, Del Rio J, Ramirez MJ. Effects of maternal separation on hypothalamic-pituitary-adrenal responses, cognition and vulnerability to stress in adult female rats. Neuroscience. 2008;154(4):1218–26. Epub 2008/06/17. doi: 10.1016/j.neuroscience.2008.05.011 18554808.

19. Fabricius K, Wortwein G, Pakkenberg B. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain structure & function. 2008;212(5):403–16. Epub 2008/01/18. doi: 10.1007/s00429-007-0169-6 18200448; PubMed Central PMCID: PMC2226080.

20. Gracia-Rubio I, Moscoso-Castro M, Pozo OJ, Marcos J, Nadal R, Valverde O. Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice. Progress in neuro-psychopharmacology & biological psychiatry. 2016;65:104–17. Epub 2015/09/19. doi: 10.1016/j.pnpbp.2015.09.003 26382758.

21. Mogi K, Nagasawa M, Kikusui T. Developmental consequences and biological significance of mother-infant bonding. Progress in neuro-psychopharmacology & biological psychiatry. 2011;35(5):1232–41. Epub 2010/09/08. doi: 10.1016/j.pnpbp.2010.08.024 20817069.

22. Nagasawa M, Okabe S, Mogi K, Kikusui T. Oxytocin and mutual communication in mother-infant bonding. Frontiers in human neuroscience. 2012;6:31. Epub 2012/03/01. doi: 10.3389/fnhum.2012.00031 22375116; PubMed Central PMCID: PMC3289392.

23. Wang Z, Storm DR. Maternal behavior is impaired in female mice lacking type 3 adenylyl cyclase. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2011;36(4):772–81. Epub 2010/12/15. doi: 10.1038/npp.2010.211 21150908; PubMed Central PMCID: PMC3055720.

24. Wohr M, Schwarting RK. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell and tissue research. 2013;354(1):81–97. Epub 2013/04/12. doi: 10.1007/s00441-013-1607-9 23576070.

25. Okabe S, Nagasawa M, Kihara T, Kato M, Harada T, Koshida N, et al. Pup odor and ultrasonic vocalizations synergistically stimulate maternal attention in mice. Behavioral neuroscience. 2013;127(3):432–8. Epub 2013/04/03. doi: 10.1037/a0032395 23544596.

26. Hahn ME, Karkowski L, Weinreb L, Henry A, Schanz N, Hahn EM. Genetic and developmental influences on infant mouse ultrasonic calling. II. Developmental patterns in the calls of mice 2–12 days of age. Behavior genetics. 1998;28(4):315–25. Epub 1998/11/06. doi: 10.1023/a:1021679615792 9803024.

27. Shair HN. Parental potentiation of vocalization as a marker for filial bonds in infant animals. Developmental psychobiology. 2014;56(8):1689–97. Epub 2014/06/12. doi: 10.1002/dev.21222 24915803.

28. Esposito G, Yoshida S, Ohnishi R, Tsuneoka Y, Rostagno Mdel C, Yokota S, et al. Infant calming responses during maternal carrying in humans and mice. Current biology: CB. 2013;23(9):739–45. Epub 2013/04/23. doi: 10.1016/j.cub.2013.03.041 23602481.

29. Heyser CJ. Assessment of developmental milestones in rodents. Current protocols in neuroscience. 2004;Chapter 8:Unit 8 18. Epub 2008/04/23. doi: 10.1002/0471142301.ns0818s25 18428605.

30. Yoshida S, Esposito G, Ohnishi R, Tsuneoka Y, Okabe S, Kikusui T, et al. Transport Response is a filial-specific behavioral response to maternal carrying in C57BL/6 mice. Frontiers in zoology. 2013;10(1):50. Epub 2013/08/16. doi: 10.1186/1742-9994-10-50 23945354; PubMed Central PMCID: PMC3751433.

31. Breen MF, Leshner AI. Maternal pheromone: A demonstration of its existence in the mouse (Mus musculus). Physiology & behavior. 1977;18(3):527–9. https://doi.org/10.1016/0031-9384(77)90269-4.

32. Lassi G, Tucci V. Gene-environment interaction influences attachment-like style in mice. Genes, brain, and behavior. 2017;16(6):612–8. Epub 2017/04/20. doi: 10.1111/gbb.12385 28421709.

33. Mogi K, Takakuda A, Tsukamoto C, Ooyama R, Okabe S, Koshida N, et al. Mutual mother-infant recognition in mice: The role of pup ultrasonic vocalizations. Behavioural brain research. 2017;325(Pt B):138–46. Epub 2016/08/29. doi: 10.1016/j.bbr.2016.08.044 27567527.

34. Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes, brain, and behavior. 2004;3(5):303–14. Epub 2004/09/04. doi: 10.1111/j.1601-183X.2004.00071.x 15344923.

35. Naert A, Callaerts-Vegh Z, D'Hooge R. Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post-weaning socially isolated mice. Brain research bulletin. 2011;85(6):354–62. Epub 2011/04/20. doi: 10.1016/j.brainresbull.2011.03.027 21501666.

36. Moore CL, Morelli GA. Mother rats interact differently with male and female offspring. Journal of comparative and physiological psychology. 1979;93(4):677–84. Epub 1979/08/01. doi: 10.1037/h0077599 479402.

37. Edelmann MN, Demers CH, Auger AP. Maternal touch moderates sex differences in juvenile social play behavior. PloS one. 2013;8(2):e57396. Epub 2013/03/06. doi: 10.1371/journal.pone.0057396 23460849; PubMed Central PMCID: PMC3583898.

38. Volders K, Nuytens K, Creemers JW. The autism candidate gene Neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Current molecular medicine. 2011;11(3):204–17. Epub 2011/03/08. doi: 10.2174/156652411795243432 21375492.

39. Castermans D, Volders K, Crepel A, Backx L, De Vos R, Freson K, et al. SCAMP5, NBEA and AMISYN: three candidate genes for autism involved in secretion of large dense-core vesicles. Human molecular genetics. 2010;19(7):1368–78. Epub 2010/01/15. doi: 10.1093/hmg/ddq013 20071347.

40. Castermans D, Wilquet V, Parthoens E, Huysmans C, Steyaert J, Swinnen L, et al. The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. Journal of medical genetics. 2003;40(5):352–6. Epub 2003/05/15. doi: 10.1136/jmg.40.5.352 12746398; PubMed Central PMCID: PMC1735479.

41. Nuytens K, Gantois I, Stijnen P, Iscru E, Laeremans A, Serneels L, et al. Haploinsufficiency of the autism candidate gene Neurobeachin induces autism-like behaviors and affects cellular and molecular processes of synaptic plasticity in mice. Neurobiology of disease. 2013;51:144–51. Epub 2012/11/17. doi: 10.1016/j.nbd.2012.11.004 23153818.

42. Wise A, Tenezaca L, Fernandez RW, Schatoff E, Flores J, Ueda A, et al. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns. Journal of neurogenetics. 2015;29(2–3):135–43. Epub 2015/06/24. doi: 10.3109/01677063.2015.1064916 26100104; PubMed Central PMCID: PMC4747641.

43. Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. Assessment of social interaction behaviors. Journal of visualized experiments: JoVE. 2011;(48). Epub 2011/03/16. doi: 10.3791/2473 21403628; PubMed Central PMCID: PMC3197404.

44. Richmond G, Sachs BD. Maternal discrimination of pup sex in rats. Developmental psychobiology. 1984;17(1):87–9. Epub 1984/01/01. doi: 10.1002/dev.420170108 6698313.

45. Kikusui T, Kiyokawa Y, Mori Y. Deprivation of mother-pup interaction by early weaning alters myelin formation in male, but not female, ICR mice. Brain research. 2007;1133(1):115–22. Epub 2006/12/23. doi: 10.1016/j.brainres.2006.11.031 17184748.

46. Oomen CA, Girardi CE, Cahyadi R, Verbeek EC, Krugers H, Joels M, et al. Opposite effects of early maternal deprivation on neurogenesis in male versus female rats. PloS one. 2009;4(1):e3675. Epub 2009/01/31. doi: 10.1371/journal.pone.0003675 19180242; PubMed Central PMCID: PMC2629844.

47. Bondar NP, Lepeshko AA, Reshetnikov VV. Effects of Early-Life Stress on Social and Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects. Behavioural neurology. 2018;2018:1538931. Epub 2018/04/06. doi: 10.1155/2018/1538931 29619126; PubMed Central PMCID: PMC5818933.

48. Xu H, Ye Y, Hao Y, Shi F, Yan Z, Yuan G, et al. Sex differences in associations between maternal deprivation and alterations in hippocampal calcium-binding proteins and cognitive functions in rats. Behavioral and Brain Functions. 2018;14(1):10. doi: 10.1186/s12993-018-0142-y 29759084

49. Arakawa H. Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behavioural brain research. 2018;341:98–108. Epub 2017/12/31. doi: 10.1016/j.bbr.2017.12.022 29287909.

50. Cox KH, Rissman EF. Sex differences in juvenile mouse social behavior are influenced by sex chromosomes and social context. Genes, brain, and behavior. 2011;10(4):465–72. Epub 2011/03/19. doi: 10.1111/j.1601-183X.2011.00688.x 21414140; PubMed Central PMCID: PMC3107935.

51. Numan M, Young LJ. Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications. Hormones and behavior. 2016;77:98–112. Epub 2015/06/13. doi: 10.1016/j.yhbeh.2015.05.015 26062432; PubMed Central PMCID: PMC4671834.

52. Bosch OJ, Neumann ID. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Hormones and behavior. 2012;61(3):293–303. Epub 2011/11/22. doi: 10.1016/j.yhbeh.2011.11.002 22100184.

53. Coria-Avila GA, Manzo J, Garcia LI, Carrillo P, Miquel M, Pfaus JG. Neurobiology of social attachments. Neuroscience and biobehavioral reviews. 2014;43:173–82. Epub 2014/04/29. doi: 10.1016/j.neubiorev.2014.04.004 24769402.

54. Hammock EA, Law CS, Levitt P. Vasopressin eliminates the expression of familiar odor bias in neonatal female mice through V1aR. Hormones and behavior. 2013;63(2):352–60. Epub 2012/12/25. doi: 10.1016/j.yhbeh.2012.12.006 23261858; PubMed Central PMCID: PMC4285782.

55. Mogi K, Ooyama R, Nagasawa M, Kikusui T. Effects of neonatal oxytocin manipulation on development of social behaviors in mice. Physiology & behavior. 2014;133:68–75. Epub 2014/05/27. doi: 10.1016/j.physbeh.2014.05.010 24857720.

56. Hammock EA. Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2015;40(1):24–42. Epub 2014/05/28. doi: 10.1038/npp.2014.120 24863032; PubMed Central PMCID: PMC4262889.

57. Takahashi T, Okabe S, Broin PO, Nishi A, Ye K, Beckert MV, et al. Structure and function of neonatal social communication in a genetic mouse model of autism. Molecular psychiatry. 2016;21(9):1208–14. Epub 2015/12/17. doi: 10.1038/mp.2015.190 26666205; PubMed Central PMCID: PMC4909589.

58. Vivanti G, Nuske HJ. Autism, attachment, and social learning: Three challenges and a way forward. Behavioural brain research. 2017;325(Pt B):251–9. Epub 2016/10/23. doi: 10.1016/j.bbr.2016.10.025 27751811.

59. Gernsbacher MA, Dissanayake C, Goldsmith HH, Mundy PC, Rogers SJ, Sigman M. Autism and deficits in attachment behavior. Science. 2005;307(5713):1201–3; author reply -3. Epub 2005/02/26. doi: 10.1126/science.307.5713.1201 15731426; PubMed Central PMCID: PMC4301420.

60. Rutgers AH, Bakermans-Kranenburg MJ, van Ijzendoorn MH, van Berckelaer-Onnes IA. Autism and attachment: a meta-analytic review. Journal of child psychology and psychiatry, and allied disciplines. 2004;45(6):1123–34. Epub 2004/07/20. doi: 10.1111/j.1469-7610.2004.t01-1-00305.x 15257669.

61. Sivaratnam CS, Newman LK, Tonge BJ, Rinehart NJ. Attachment and Emotion Processing in Children with Autism Spectrum Disorders: Neurobiological, Neuroendocrine, and Neurocognitive Considerations. Review Journal of Autism and Developmental Disorders. 2015;2(2):222–42. doi: 10.1007/s40489-015-0048-7

62. Raineki C, De Souza MA, Szawka RE, Lutz ML, De Vasconcellos LF, Sanvitto GL, et al. Neonatal handling and the maternal odor preference in rat pups: involvement of monoamines and cyclic AMP response element-binding protein pathway in the olfactory bulb. Neuroscience. 2009;159(1):31–8. Epub 2009/01/14. doi: 10.1016/j.neuroscience.2008.12.012 19138731.

63. Fraley RC, Vicary AM, Brumbaugh CC, Roisman GI. Patterns of stability in adult attachment: an empirical test of two models of continuity and change. Journal of personality and social psychology. 2011;101(5):974–92. Epub 2011/06/29. doi: 10.1037/a0024150 21707199.

64. Richter SH, Kastner N, Loddenkemper DH, Kaiser S, Sachser N. A Time to Wean? Impact of Weaning Age on Anxiety-Like Behaviour and Stability of Behavioural Traits in Full Adulthood. PloS one. 2016;11(12):e0167652. Epub 2016/12/09. doi: 10.1371/journal.pone.0167652 27930688; PubMed Central PMCID: PMC5145172.

65. Richter SH, Kästner N, Kriwet M, Kaiser S, Sachser N. Play matters: the surprising relationship between juvenile playfulness and anxiety in later life. Animal Behaviour. 2016;114:261–71. https://doi.org/10.1016/j.anbehav.2016.02.003.


Článek vyšel v časopise

PLOS One


2020 Číslo 1