Serum galectins as potential biomarkers of inflammatory bowel diseases


Autoři: Tony B. Yu aff001;  Susanna Dodd aff003;  Lu-Gang Yu aff002;  Sreedhar Subramanian aff002
Působiště autorů: Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, United Kingdom aff001;  Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, England, United Kingdom aff002;  Department of Biostatistics, University of Liverpool, Liverpool, England, United Kingdom aff003;  Department of Gastroenterology, Royal Liverpool University Hospital, Liverpool, England, United Kingdom aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227306

Souhrn

The inflammatory bowel diseases (IBD), which include mainly Crohn’s disease (CD) and ulcerative colitis (UC), are common chronic inflammatory conditions of the digestive system. The diagnosis of IBD relies on the use of a combination of factors including symptoms, endoscopy and levels of serum proteins such as C-reactive protein (CRP) or faecal calprotectin. Currently there is no single reliable biomarker to determine IBD. Galectins are a family of galactoside-binding proteins that are commonly altered in the circulation of disease conditions such as cancer and inflammation. This study investigated serum galectin levels as possible biomarkers in determining IBD and IBD disease activity. Levels of galectins-1, -2, -3, -4, -7 and -8 were analysed in 208 samples from ambulant IBD patients (97 CD, 71 UC) patients and 40 from healthy people. Disease activity was assessed using Harvey-Bradshaw Index for CD and simple clinical colitis activity index for UC. The relationship of each galectin in determining IBD and IBD disease activity were analysed and compared with current IBD biomarker CRP. It was found that serum level of galectin-1 and -3, but not galectins-2, -4, -7 and -8, were significantly higher in IBD patients than in healthy people. At cut-off of 4.1ng/ml, galectin-1 differentiated IBD from healthy controls with 71% sensitivity and 87% specificity. At cut-off of 38.5ng/ml, galectin-3 separated IBD from healthy controls with 53% sensitivity and 87% specificity. None of the galectins however were able to distinguish active disease from remission in UC or CD. Thus, levels of galectins-1 and -3 are significantly elevated in both UC and CD patients compared to healthy people. Although the increased galectin levels are not able to separate active and inactive UC and CD, they may have the potential to be developed as useful biomarkers for IBD diagnosis either alone or in combination with other biomarkers.

Klíčová slova:

Biomarkers – C-reactive proteins – Crohn's disease – Endoscopy – Gastrointestinal tract – Inflammatory bowel disease – Secretion – Ulcerative colitis


Zdroje

1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347(6):417–29. Epub 2002/08/09. doi: 10.1056/NEJMra020831 12167685.

2. Jones GR, Lyons M, Plevris N, Jenkinson PW, Bisset C, Burgess C, et al. IBD prevalence in Lothian, Scotland, derived by capture-recapture methodology. Gut. 2019. Epub 2019/07/14. doi: 10.1136/gutjnl-2019-318936 31300515.

3. Walsh AJ, Bryant RV, Travis SP. Current best practice for disease activity assessment in IBD. Nat Rev Gastroenterol Hepatol. 2016;13(10):567–79. Epub 2016/09/02. doi: 10.1038/nrgastro.2016.128 27580684.

4. Travis SP, Farrant JM, Ricketts C, Nolan DJ, Mortensen NM, Kettlewell MG, et al. Predicting outcome in severe ulcerative colitis. Gut. 1996;38(6):905–10. Epub 1996/06/01. doi: 10.1136/gut.38.6.905 8984031; PubMed Central PMCID: PMC1383200.

5. Vermeire S, Van Assche G, Rutgeerts P. C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis. 2004;10(5):661–5. Epub 2004/10/09. doi: 10.1097/00054725-200409000-00026 15472532.

6. Walsham NE, Sherwood RA. Fecal calprotectin in inflammatory bowel disease. Clin Exp Gastroenterol. 2016;9:21–9. Epub 2016/02/13. doi: 10.2147/CEG.S51902 26869808; PubMed Central PMCID: PMC4734737.

7. Marechal C, Aimone-Gastin I, Baumann C, Dirrenberger B, Gueant JL, Peyrin-Biroulet L. Compliance with the faecal calprotectin test in patients with inflammatory bowel disease. United European Gastroenterol J. 2017;5(5):702–7. Epub 2017/08/18. doi: 10.1177/2050640616686517 28815034; PubMed Central PMCID: PMC5548356.

8. Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994;269(33):20807–10. Epub 1994/08/19. 8063692.

9. Fred Brewer C. Binding and cross-linking properties of galectins. Biochim Biophys Acta. 2002;1572(2–3):255–62. Epub 2002/09/12. doi: 10.1016/s0304-4165(02)00312-4 12223273.

10. Barrow H, Rhodes JM, Yu L-G. The role of galectins in colorectal cancer progression. Int J Cancer. 2011;129:1–8. Epub 20 Jan 2011. doi: 10.1002/ijc.25945 21520033

11. Gitt MA, Colnot C, Poirier F, Nani KJ, Barondes SH, Leffler H. Galectin-4 and galectin-6 are two closely related lectins expressed in mouse gastrointestinal tract. J Biol Chem. 1998;273(5):2954–60. Epub 1998/02/28. doi: 10.1074/jbc.273.5.2954 9446608.

12. Lippert E, Falk W, Bataille F, Kaehne T, Naumann M, Goeke M, et al. Soluble galectin-3 is a strong, colonic epithelial-cell-derived, lamina propria fibroblast-stimulating factor. Gut. 2007;56(1):43–51. Epub 2006/05/20. doi: 10.1136/gut.2005.081646 16709662; PubMed Central PMCID: PMC1856646.

13. Sindrewicz P, Lian LY, Yu LG. Interaction of the Oncofetal Thomsen-Friedenreich Antigen with Galectins in Cancer Progression and Metastasis. Frontiers in oncology. 2016;6:79. Epub 2016/04/12. doi: 10.3389/fonc.2016.00079 27066458; PubMed Central PMCID: PMC4814717.

14. Barrow H, Guo X, Wandall HH, Pedersen JW, Fu B, Zhao Q, et al. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin Cancer Res. 2011;17(22):7035–46. Epub 2011/09/22. doi: 10.1158/1078-0432.CCR-11-1462 21933892.

15. Zhao Q, Barclay M, Hilkens J, Guo X, Barrow H, Rhodes JM, et al. Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Cancer. 2010;9:154. Epub 2010/06/23. doi: 10.1186/1476-4598-9-154 20565834; PubMed Central PMCID: PMC2911446.

16. Zhao Q, Guo X, Nash GB, Stone PC, Hilkens J, Rhodes JM, et al. Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res. 2009;69(17):6799–806. Epub 2009/08/20. doi: 10.1158/0008-5472.CAN-09-1096 19690136; PubMed Central PMCID: PMC2741610.

17. Chen C, Duckworth CA, Fu B, Pritchard DM, Rhodes JM, Yu LG. Circulating galectins -2, -4 and -8 in cancer patients make important contributions to the increased circulation of several cytokines and chemokines that promote angiogenesis and metastasis. British journal of cancer. 2014;110(3):741–52. doi: 10.1038/bjc.2013.793 24384681; PubMed Central PMCID: PMC3915140.

18. Paclik D, Berndt U, Guzy C, Dankof A, Danese S, Holzloehner P, et al. Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J Mol Med (Berl). 2008;86(12):1395–406. Epub 2007/12/08. doi: 10.1007/s00109-007-0290-2 18064431.

19. Paclik D, Danese S, Berndt U, Wiedenmann B, Dignass A, Sturm A. Galectin-4 controls intestinal inflammation by selective regulation of peripheral and mucosal T cell apoptosis and cell cycle. PLoS One. 2008;3(7):e2629. Epub 2008/07/10. doi: 10.1371/journal.pone.0002629 18612433; PubMed Central PMCID: PMC2440804.

20. Srikrishna G, Turovskaya O, Shaikh R, Newlin R, Foell D, Murch S, et al. Carboxylated glycans mediate colitis through activation of NF-kappa B. J Immunol. 2005;175(8):5412–22. Epub 2005/10/08. doi: 10.4049/jimmunol.175.8.5412 16210648.

21. Lippert E, Gunckel M, Brenmoehl J, Bataille F, Falk W, Scholmerich J, et al. Regulation of galectin-3 function in mucosal fibroblasts: potential role in mucosal inflammation. Clin Exp Immunol. 2008;152(2):285–97. Epub 2008/03/14. doi: 10.1111/j.1365-2249.2008.03618.x 18336593; PubMed Central PMCID: PMC2384104.

22. Frol'ova L, Smetana K Jr., Borovska D, Kitanovicova A, Klimesova K, Janatkova I, et al. Detection of galectin-3 in patients with inflammatory bowel diseases: new serum marker of active forms of IBD? Inflamm Res. 2009;58(8):503–12. Epub 2009/03/10. doi: 10.1007/s00011-009-0016-8 19271150.

23. Harvey RF, Bradshaw JM. A simple index of Crohn's-disease activity. Lancet. 1980;1(8167):514. doi: 10.1016/s0140-6736(80)92767-1 6102236.

24. Walmsley RS, Ayres RC, Pounder RE, Allan RN. A simple clinical colitis activity index. Gut. 1998;43(1):29–32. doi: 10.1136/gut.43.1.29 9771402; PubMed Central PMCID: PMC1727189.

25. Vande Casteele N, Khanna R, Levesque BG, Stitt L, Zou GY, Singh S, et al. The relationship between infliximab concentrations, antibodies to infliximab and disease activity in Crohn's disease. Gut. 2014. doi: 10.1136/gutjnl-2014-307883 25336114.

26. Papa Gobbi R, De Francesco N, Bondar C, Muglia C, Chirdo F, Rumbo M, et al. A galectin-specific signature in the gut delineates Crohn's disease and ulcerative colitis from other human inflammatory intestinal disorders. Biofactors. 2016;42(1):93–105. Epub 2016/02/20. doi: 10.1002/biof.1252 26891020.

27. Cao ZQ, Guo XL. The role of galectin-4 in physiology and diseases. Protein Cell. 2016;7(5):314–24. Epub 2016/03/28. doi: 10.1007/s13238-016-0262-9 27017379; PubMed Central PMCID: PMC4853315.

28. Simovic Markovic B, Nikolic A, Gazdic M, Bojic S, Vucicevic L, Kosic M, et al. Galectin-3 Plays an Important Pro-inflammatory Role in the Induction Phase of Acute Colitis by Promoting Activation of NLRP3 Inflammasome and Production of IL-1beta in Macrophages. J Crohns Colitis. 2016;10(5):593–606. Epub 2016/01/21. doi: 10.1093/ecco-jcc/jjw013 26786981; PubMed Central PMCID: PMC4957458.

29. Cibor D, Szczeklik K, Brzozowski B, Mach T, Owczarek D. Serum galectin 3, galectin 9 and galectin 3-binding proteins in patients with active and inactive inflammatory bowel disease. J Physiol Pharmacol. 2019;70(1). Epub 2018/02/01. doi: 10.26402/jpp.2019.1.06 31019124.

30. Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S. Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res. 2000;6(4):1389–93. Epub 2000/04/25. 10778968.

31. Chen C, Duckworth CA, Zhao Q, Pritchard DM, Rhodes JM, Yu LG. Increased circulation of galectin-3 in cancer induces secretion of metastasis-promoting cytokines from blood vascular endothelium. Clin Cancer Res. 2013;19(7):1693–704. Epub 2013/02/13. doi: 10.1158/1078-0432.CCR-12-2940 23401226; PubMed Central PMCID: PMC3618858.

32. Muglia CI, Gobbi RP, Smaldini P, Delgado ML, Candia M, Zanuzzi C, et al. Inflammation Controls Sensitivity of Human and Mouse Intestinal Epithelial Cells to Galectin-1. J Cell Physiol. 2016;231(7):1575–85. Epub 2015/11/14. doi: 10.1002/jcp.25249 26566180.

33. van der Leij J, van den Berg A, Blokzijl T, Harms G, van Goor H, Zwiers P, et al. Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. J Pathol. 2004;204(5):511–8. Epub 2004/11/13. doi: 10.1002/path.1671 15538736.

34. Colomb F, Wang W, Simpson D, Zafar M, Beynon R, Rhodes JM, et al. Galectin-3 interacts with the cell-surface glycoprotein CD146 (MCAM, MUC18) and induces secretion of metastasis-promoting cytokines from vascular endothelial cells. J Biol Chem. 2017;292(20):8381–9. doi: 10.1074/jbc.M117.783431 28364041.

35. Atreya R, Neurath MF. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol. 2005;28(3):187–96. Epub 2005/09/01. doi: 10.1385/CRIAI:28:3:187 16129903.

36. Shinzaki S, Iijima H, Fujii H, Kamada Y, Naka T, Takehara T, et al. A novel pathogenesis of inflammatory bowel disease from the perspective of glyco-immunology. J Biochem. 2017;161(5):409–15. Epub 2017/03/25. doi: 10.1093/jb/mvx010 28338836.


Článek vyšel v časopise

PLOS One


2020 Číslo 1