PR3 levels are impaired in plasma and PBMCs from Arabs with cardiovascular diseases
Autoři:
Abdelkrim Khadir aff001; Dhanya Madhu aff001; Sina Kavalakatt aff001; Preethi Cherian aff001; Monira Alarouj aff002; Abdullah Bennakhi aff002; Jehad Abubaker aff001; Ali Tiss aff001; Naser Elkum aff003
Působiště autorů:
Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
aff001; Medical Division, Dasman Diabetes Institute, Kuwait City, Kuwait
aff002; Sidra Medicine, Doha, Qatar
aff003
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227606
Souhrn
Cardiovascular disease (CVD) risks persist in patients despite treatment. CVD susceptibility also varies with sex and ethnicity and is not entirely explained by conventional CVD risk factors. The aim of the present study was to identify novel CVD candidate markers in circulating Peripheral blood mononuclear cells (PBMCs) and plasma from Arab obese subjects with and without CVD using proteomic approaches. Human adults with confirmed CVD (n = 208) and matched non-CVD controls (n = 152) living in Kuwait were examined in the present cross-sectional study. Anthropometric and classical biochemical parameters were determined. We employed a shotgun proteomic profiling approach on PBMCs isolated from a subset of the groups (n = 4, each), and differentially expressed proteins selected between the two groups were validated at the mRNA level using RT-PCR (n = 6, each). Plasma levels of selected proteins from the proteomics profiling: Proteinase-3 (PR3), Annexin-A3 (ANX3), Defensin (DEFA1), and Matrix Metalloproteinase-9 (MMP9), were measured in the entire cohort using human enzyme-linked immunosorbent assay kits and were subsequently correlated with various clinical parameters. Out of the 1407 we identified and quantified from the proteomics profiling, 47 proteins were dysregulated with at least twofold change between the two subject groups. Among the differentially expressed proteins, 11 were confirmed at the mRNA levels. CVD influenced the levels of the shortlisted proteins (MMP9, PR3, ANX3, and DEFA1) in the PBMCs and plasma differentially. Despite the decreased levels of both protein and mRNA in PBMCs, PR3 circulating levels increased significantly in patients with CVD and were influenced by neither diabetes nor statin treatment. No significant changes were; however, observed in the DEFA1, MMP9, and ANX3 levels in plasma. Multivariate logistic regression analysis revealed that only PR3 was independently associated with CVD. Our results suggest that the dysregulation of PR3 levels in plasma and PBMCs reflects underlying residual CVD risks even in the treated population. More prospective and larger studies are required to establish the role of PR3 in CVD progression.
Klíčová slova:
Biomarkers – Blood plasma – Cardiovascular diseases – diabetes mellitus – Gene expression – Protein expression – Statins – Defensins
Zdroje
1. Turk-Adawi K, Sarrafzadegan N, Fadhil I, Taubert K, Sadeghi M, Wenger NK, et al. Cardiovascular disease in the Eastern Mediterranean region: epidemiology and risk factor burden. Nat Rev Cardiol. 2018;15(2):106–19. doi: 10.1038/nrcardio.2017.138 28933782.
2. Awan Z, Genest J. Inflammation modulation and cardiovascular disease prevention. Eur J Prev Cardiol. 2015;22(6):719–33. doi: 10.1177/2047487314529350 24711609.
3. Albert MA, Ridker PM. C-reactive protein as a risk predictor: do race/ethnicity and gender make a difference? Circulation. 2006;114(5):e67–74. doi: 10.1161/CIRCULATIONAHA.106.613570 16880331.
4. Khadir A, Tiss A, Kavalakatt S, Behbehani K, Dehbi M, Elkum N. Gender-specific association of oxidative stress and inflammation with cardiovascular risk factors in Arab population. Mediators Inflamm. 2015;2015:512603. doi: 10.1155/2015/512603 25918477; PubMed Central PMCID: PMC4397026.
5. Channanath AM, Farran B, Behbehani K, Thanaraj TA. Association between body mass index and onset of hypertension in men and women with and without diabetes: a cross-sectional study using national health data from the State of Kuwait in the Arabian Peninsula. BMJ open. 2015;5(6):e007043. doi: 10.1136/bmjopen-2014-007043 26044759; PubMed Central PMCID: PMC4466600.
6. Richards AM. Future biomarkers in cardiology: my favourites. European Heart Journal Supplements. 2018;20(suppl_G):G37–G44. https://doi.org/10.1093/eurheartj/suy023.
7. Mokou M, Lygirou V, Vlahou A, Mischak H. Proteomics in cardiovascular disease: recent progress and clinical implication and implementation. Expert Rev Proteomics. 2017;14(2):117–36. doi: 10.1080/14789450.2017.1274653 27997814.
8. Thomas GS, Voros S, McPherson JA, Lansky AJ, Winn ME, Bateman TM, et al. A blood-based gene expression test for obstructive coronary artery disease tested in symptomatic nondiabetic patients referred for myocardial perfusion imaging the COMPASS study. Circ Cardiovasc Genet. 2013;6(2):154–62. doi: 10.1161/CIRCGENETICS.112.964015 23418288.
9. Voros S, Elashoff MR, Wingrove JA, Budoff MJ, Thomas GS, Rosenberg S. A peripheral blood gene expression score is associated with atherosclerotic Plaque Burden and Stenosis by cardiovascular CT-angiography: results from the PREDICT and COMPASS studies. Atherosclerosis. 2014;233(1):284–90. doi: 10.1016/j.atherosclerosis.2013.12.045 24529158.
10. Tariq S, Goddard CA, Elkum N. Barriers in participant recruitment of diverse ethnicities in the state of Kuwait. Int J Equity Health. 2013;12:93. doi: 10.1186/1475-9276-12-93 24257144; PubMed Central PMCID: PMC4222678.
11. World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. doi: 10.1001/jama.2013.281053 24141714.
12. Khadir A, Kavalakatt S, Dehbi M, Alarouj M, Bennakhi A, Tiss A, et al. DUSP1 Is a Potential Marker of Chronic Inflammation in Arabs with Cardiovascular Diseases. Disease markers. 2018;2018:9529621. doi: 10.1155/2018/9529621 30647800; PubMed Central PMCID: PMC6311887.
13. Madhu D, Hammad M, Kavalakatt S, Khadir A, Tiss A. GLP-1 Analogue, Exendin-4, Modulates MAPKs Activity but not the Heat Shock Response in Human HepG2 Cells. Proteomics Clin Appl. 2018;12(1). doi: 10.1002/prca.201600169 29105359.
14. Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda). 2013;28(6):391–403. doi: 10.1152/physiol.00029.2013 24186934; PubMed Central PMCID: PMC3858212.
15. Xie Y, Mustafa A, Yerzhan A, Merzhakupova D, Yerlan P, A NO, et al. Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Discov. 2017;3:17036. doi: 10.1038/cddiscovery.2017.36 28811933; PubMed Central PMCID: PMC5554797.
16. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90(3):251–62. 11861412.
17. Chen F, Eriksson P, Hansson GK, Herzfeld I, Klein M, Hansson LO, et al. Expression of matrix metalloproteinase 9 and its regulators in the unstable coronary atherosclerotic plaque. Int J Mol Med. 2005;15(1):57–65. 15583828.
18. Gough PJ, Gomez IG, Wille PT, Raines EW. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest. 2006;116(1):59–69. doi: 10.1172/JCI25074 16374516; PubMed Central PMCID: PMC1319218.
19. Jonsson S, Lundberg AK, Jonasson L. Overexpression of MMP-9 and its inhibitors in blood mononuclear cells after myocardial infarction—is it associated with depressive symptomatology? PLoS One. 2014;9(8):e105572. doi: 10.1371/journal.pone.0105572 25153995; PubMed Central PMCID: PMC4143273.
20. Quinn K, Henriques M, Parker T, Slutsky AS, Zhang H. Human neutrophil peptides: a novel potential mediator of inflammatory cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2008;295(5):H1817–24. doi: 10.1152/ajpheart.00472.2008 18805897; PubMed Central PMCID: PMC4896811.
21. Oren A, Taylor JM. The subcellular localization of defensins and myeloperoxidase in human neutrophils: immunocytochemical evidence for azurophil granule heterogeneity. J Lab Clin Med. 1995;125(3):340–7. 7897301.
22. Maneerat Y, Prasongsukarn K, Benjathummarak S, Dechkhajorn W, Chaisri U. Increased alpha-defensin expression is associated with risk of coronary heart disease: a feasible predictive inflammatory biomarker of coronary heart disease in hyperlipidemia patients. Lipids in health and disease. 2016;15:117. doi: 10.1186/s12944-016-0285-5 27430968; PubMed Central PMCID: PMC4949746.
23. Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82(2):331–71. doi: 10.1152/physrev.00030.2001 11917092.
24. Le Cabec V, Maridonneau-Parini I. Annexin 3 is associated with cytoplasmic granules in neutrophils and monocytes and translocates to the plasma membrane in activated cells. Biochem J. 1994;303 (Pt 2):481–7. doi: 10.1042/bj3030481 7526843; PubMed Central PMCID: PMC1137353.
25. Kessler C, Junker H, Balseanu TA, Oprea B, Pirici D, Mogoanta L, et al. Annexin A3 expression after stroke in the aged rat brain. Rom J Morphol Embryol. 2008;49(1):27–35. 18273499.
26. Brachemi S, Mambole A, Fakhouri F, Mouthon L, Guillevin L, Lesavre P, et al. Increased membrane expression of proteinase 3 during neutrophil adhesion in the presence of anti proteinase 3 antibodies. J Am Soc Nephrol. 2007;18(8):2330–9. doi: 10.1681/ASN.2006121309 17634439.
27. Mayet WJ, Csernok E, Szymkowiak C, Gross WL, Meyer zum Buschenfelde KH. Human endothelial cells express proteinase 3, the target antigen of anticytoplasmic antibodies in Wegener's granulomatosis. Blood. 1993;82(4):1221–9. 8353286.
28. Crisford H, Sapey E, Stockley RA. Proteinase 3; a potential target in chronic obstructive pulmonary disease and other chronic inflammatory diseases. Respir Res. 2018;19(1):180. doi: 10.1186/s12931-018-0883-z 30236095; PubMed Central PMCID: PMC6149181.
29. Ng LL, Khan SQ, Narayan H, Quinn P, Squire IB, Davies JE. Proteinase 3 and prognosis of patients with acute myocardial infarction. Clin Sci (Lond). 2011;120(6):231–8. doi: 10.1042/CS20100366 20942801; PubMed Central PMCID: PMC2999885.
30. Abdullah MH, Othman Z, Noor HM, Arshad SS, Yusof AK, Jamal R, et al. Peripheral blood gene expression profile of atherosclerotic coronary artery disease in patients of different ethnicity in Malaysia. J Cardiol. 2012;60(3):192–203. doi: 10.1016/j.jjcc.2012.05.009 22738689.
31. Wang J, Warzecha D, Wilcken D, Wang XL. Polymorphism in the gelatinase B gene and the severity of coronary arterial stenosis. Clin Sci (Lond). 2001;101(1):87–92. 11410119.
32. Haberbosch W, Gardemann A. Gelatinase B C(-1562)T polymorphism in relation to ischaemic heart disease. Scand J Clin Lab Invest. 2005;65(6):513–22. doi: 10.1080/00365510500206575 16179285.
33. Zhao H, Yan H, Yamashita S, Li W, Liu C, Chen Y, et al. Acute ST-segment elevation myocardial infarction is associated with decreased human antimicrobial peptide LL-37 and increased human neutrophil peptide-1 to 3 in plasma. J Atheroscler Thromb. 2012;19(4):357–68. doi: 10.5551/jat.10108 22186100.
34. Christensen HM, Frystyk J, Faber J, Schou M, Flyvbjerg A, Hildebrandt P, et al. alpha-Defensins and outcome in patients with chronic heart failure. Eur J Heart Fail. 2012;14(4):387–94. doi: 10.1093/eurjhf/hfs021 22357441.
35. Ungan I, Caglar FNT, Biyik I, Ciftci S, Sahin A, Akturk IF. The correlation between plasma human neutrophil peptide 1–3 levels and severity of coronary artery disease. Arch Med Sci Atheroscler Dis. 2016;1(1):e133–e8. doi: 10.5114/amsad.2016.64164 28905035; PubMed Central PMCID: PMC5421531.
36. Papazafiropoulou A, Tentolouris N. Matrix metalloproteinases and cardiovascular diseases. Hippokratia. 2009;13(2):76–82. 19561775; PubMed Central PMCID: PMC2683462.
37. Li YX, Lin CQ, Shi DY, Zeng SY, Li WS. Upregulated expression of human alpha-defensins 1, 2 and 3 in hypercholesteremia and its relationship with serum lipid levels. Hum Immunol. 2014;75(11):1104–9. doi: 10.1016/j.humimm.2014.09.014 25300997.
38. Choi M, Rolle S, Rane M, Haller H, Luft FC, Kettritz R. Extracellular signal-regulated kinase inhibition by statins inhibits neutrophil activation by ANCA. Kidney Int. 2003;63(1):96–106. doi: 10.1046/j.1523-1755.2003.00718.x 12472772.
39. Day CJ, Hewins P, Savage CO. New developments in the pathogenesis of ANCA-associated vasculitis. Clin Exp Rheumatol. 2003;21(6 Suppl 32):S35–48. 14740426.
40. Kini AS, Vengrenyuk Y, Shameer K, Maehara A, Purushothaman M, Yoshimura T, et al. Intracoronary Imaging, Cholesterol Efflux, and Transcriptomes After Intensive Statin Treatment: The YELLOW II Study. J Am Coll Cardiol. 2017;69(6):628–40. doi: 10.1016/j.jacc.2016.10.029 27989886.
41. Pezzato E, Dona M, Sartor L, Dell'Aica I, Benelli R, Albini A, et al. Proteinase-3 directly activates MMP-2 and degrades gelatin and Matrigel; differential inhibition by (-)epigallocatechin-3-gallate. J Leukoc Biol. 2003;74(1):88–94. doi: 10.1189/jlb.0203086 12832446.
42. Tongaonkar P, Golji AE, Tran P, Ouellette AJ, Selsted ME. High fidelity processing and activation of the human alpha-defensin HNP1 precursor by neutrophil elastase and proteinase 3. PLoS One. 2012;7(3):e32469. doi: 10.1371/journal.pone.0032469 22448222; PubMed Central PMCID: PMC3308943.
43. Zoega M, Ravnsborg T, Hojrup P, Houen G, Schou C. Proteinase 3 carries small unusual carbohydrates and associates with alphalpha-defensins. J Proteomics. 2012;75(5):1472–85. doi: 10.1016/j.jprot.2011.11.019 22138257.
44. Johnson JL, George SJ, Newby AC, Jackson CL. Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci U S A. 2005;102(43):15575–80. doi: 10.1073/pnas.0506201102 16221765; PubMed Central PMCID: PMC1266110.
45. Paulin N, Doring Y, Kooijman S, Blanchet X, Viola JR, de Jong R, et al. Human Neutrophil Peptide 1 Limits Hypercholesterolemia-induced Atherosclerosis by Increasing Hepatic LDL Clearance. EBioMedicine. 2017;16:204–11. doi: 10.1016/j.ebiom.2017.01.006 28111237; PubMed Central PMCID: PMC5474437.
46. Brook M, Tomlinson GH, Miles K, Smith RW, Rossi AG, Hiemstra PS, et al. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proc Natl Acad Sci U S A. 2016;113(16):4350–5. doi: 10.1073/pnas.1601831113 27044108; PubMed Central PMCID: PMC4843457.
47. Meng H, Zhang Y, An ST, Chen Y. Annexin A3 gene silencing promotes myocardial cell repair through activation of the PI3K/Akt signaling pathway in rats with acute myocardial infarction. J Cell Physiol. 2019;234(7):10535–46. doi: 10.1002/jcp.27717 30456911.
48. Zhao Y, Chen J, Freudenberg JM, Meng Q, Rajpal DK, Yang X. Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci. Arterioscler Thromb Vasc Biol. 2016;36(5):928–41. doi: 10.1161/ATVBAHA.115.306725 26966275; PubMed Central PMCID: PMC5576868.
49. de Jong R, Leoni G, Drechsler M, Soehnlein O. The advantageous role of annexin A1 in cardiovascular disease. Cell Adh Migr. 2017;11(3):261–74. doi: 10.1080/19336918.2016.1259059 27860536; PubMed Central PMCID: PMC5479459.
50. Fukuda D, Shimada K, Tanaka A, Kusuyama T, Yamashita H, Ehara S, et al. Comparison of levels of serum matrix metalloproteinase-9 in patients with acute myocardial infarction versus unstable angina pectoris versus stable angina pectoris. The American journal of cardiology. 2006;97(2):175–80. doi: 10.1016/j.amjcard.2005.08.020 16442358.
51. Tayebjee MH, Tan KT, MacFadyen RJ, Lip GY. Abnormal circulating levels of metalloprotease 9 and its tissue inhibitor 1 in angiographically proven peripheral arterial disease: relationship to disease severity. J Intern Med. 2005;257(1):110–6. doi: 10.1111/j.1365-2796.2004.01431.x 15606382.
52. Derosa G, Ferrari I, D'Angelo A, Tinelli C, Salvadeo SA, Ciccarelli L, et al. Matrix metalloproteinase-2 and -9 levels in obese patients. Endothelium. 2008;15(4):219–24. doi: 10.1080/10623320802228815 18663625.
53. Lim HS, Lip GY. Circulating matrix metalloproteinase-9 levels in atherosclerotic vascular disease: a possible measurement of systemic or specific disease pathophysiology? J Intern Med. 2008;263(6):620–2. doi: 10.1111/j.1365-2796.2008.01937.x 18479262.
54. Mirea AM, Toonen EJM, van den Munckhof I, Munsterman ID, Tjwa E, Jaeger M, et al. Increased proteinase 3 and neutrophil elastase plasma concentrations are associated with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. Mol Med. 2019;25(1):16. doi: 10.1186/s10020-019-0084-3 31046673; PubMed Central PMCID: PMC6498541.
55. Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. 2006;6(7):541–50. doi: 10.1038/nri1841 16799473.
56. Bae S, Choi J, Hong J, Jhun H, Hong K, Kang T, et al. Neutrophil proteinase 3 induces diabetes in a mouse model of glucose tolerance. Endocr Res. 2012;37(1):35–45. doi: 10.3109/07435800.2011.620579 22014109.
57. Doring Y, Soehnlein O, Weber C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ Res. 2017;120(4):736–43. doi: 10.1161/CIRCRESAHA.116.309692 28209798.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Dlouhodobá ketodieta může poškozovat naše orgány
- „Jednohubky“ z klinického výzkumu – 2024/42
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?