Structure-function analyses of candidate small molecule RPN13 inhibitors with antitumor properties

Autoři: Ravi K. Anchoori aff001;  Marietta Tan aff003;  Ssu-Hsueh Tseng aff001;  Shiwen Peng aff001;  Ruey-Shyang Soong aff001;  Aliyah Algethami aff001;  Palmer Foran aff001;  Samarjit Das aff001;  Chenguang Wang aff005;  Tian-Li Wang aff001;  Hong Liang aff001;  Chien-Fu Hung aff001;  Richard B. S. Roden aff001
Působiště autorů: Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America aff001;  Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, United States of America aff002;  Department of Otolaryngology, The Johns Hopkins University, Baltimore, Maryland, United States of America aff003;  Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America aff004;  Department of Biostatistics, The Johns Hopkins University, Baltimore, Maryland, United States of America aff005;  Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland, United States of America aff006
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


We sought to design ubiquitin-proteasome system inhibitors active against solid cancers by targeting ubiquitin receptor RPN13 within the proteasome’s 19S regulatory particle. The prototypic bis-benzylidine piperidone-based inhibitor RA190 is a michael acceptor that adducts Cysteine 88 of RPN13. In probing the pharmacophore, we showed the benefit of the central nitrogen-bearing piperidone ring moiety compared to a cyclohexanone, the importance of the span of the aromatic wings from the central enone-piperidone ring, the contribution of both wings, and that substituents with stronger electron withdrawing groups were more cytotoxic. Potency was further enhanced by coupling of a second warhead to the central nitrogen-bearing piperidone as RA375 exhibited ten-fold greater activity against cancer lines than RA190, reflecting its nitro ring substituents and the addition of a chloroacetamide warhead. Treatment with RA375 caused a rapid and profound accumulation of high molecular weight polyubiquitinated proteins and reduced intracellular glutathione levels, which produce endoplasmic reticulum and oxidative stress, and trigger apoptosis. RA375 was highly active against cell lines of multiple myeloma and diverse solid cancers, and demonstrated a wide therapeutic window against normal cells. For cervical and head and neck cancer cell lines, those associated with human papillomavirus were significantly more sensitive to RA375. While ARID1A-deficiency also enhanced sensitivity 4-fold, RA375 was active against all ovarian cancer cell lines tested. RA375 inhibited proteasome function in muscle for >72h after single i.p. administration to mice, and treatment reduced tumor burden and extended survival in mice carrying an orthotopic human xenograft derived from a clear cell ovarian carcinoma.

Klíčová slova:

Apoptosis – Cancer treatment – Cell binding – Flow cytometry – Luciferase – Ovarian cancer – Proteasomes


1. Hochstrasser M. Ubiquitin and intracellular protein degradation. Curr Opin Cell Biol. 1992;4(6):1024–31. doi: 10.1016/0955-0674(92)90135-y 1336669.

2. Dou QP, Zonder JA. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets. 2014;14(6):517–36. doi: 10.2174/1568009614666140804154511 25092212; PubMed Central PMCID: PMC4279864.

3. Broyl A, Corthals SL, Jongen JL, van der Holt B, Kuiper R, de Knegt Y, et al. Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol. 2010;11(11):1057–65. doi: 10.1016/S1470-2045(10)70206-0 20864405.

4. VanderLinden RT, Hemmis CW, Yao T, Robinson H, Hill CP. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem. 2017;292(23):9493–504. doi: 10.1074/jbc.M117.785287 28442575; PubMed Central PMCID: PMC5465478.

5. Liu Z, Dong X, Yi HW, Yang J, Gong Z, Wang Y, et al. Structural basis for the recognition of K48-linked Ub chain by proteasomal receptor Rpn13. Cell Discov. 2019;5:19. doi: 10.1038/s41421-019-0089-7 30962947; PubMed Central PMCID: PMC6443662.

6. Lu X, Nowicka U, Sridharan V, Liu F, Randles L, Hymel D, et al. Structure of the Rpn13-Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets. Nat Commun. 2017;8:15540. doi: 10.1038/ncomms15540 28598414; PubMed Central PMCID: PMC5494190.

7. Lu X, Liu F, Durham SE, Tarasov SG, Walters KJ. A High Affinity hRpn2-Derived Peptide That Displaces Human Rpn13 from Proteasome in 293T Cells. PLoS One. 2015;10(10):e0140518. doi: 10.1371/journal.pone.0140518 26466095; PubMed Central PMCID: PMC4605517.

8. Chen X, Walters KJ. Structural plasticity allows UCH37 to be primed by RPN13 or locked down by INO80G. Mol Cell. 2015;57(5):767–8. doi: 10.1016/j.molcel.2015.02.025 25747657; PubMed Central PMCID: PMC6296220.

9. Jiao L, Ouyang S, Shaw N, Song G, Feng Y, Niu F, et al. Mechanism of the Rpn13-induced activation of Uch37. Protein Cell. 2014;5(8):616–30. doi: 10.1007/s13238-014-0046-z 24752541; PubMed Central PMCID: PMC4130924.

10. Anchoori RK, Karanam B, Peng S, Wang JW, Jiang R, Tanno T, et al. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell. 2013;24(6):791–805. doi: 10.1016/j.ccr.2013.11.001 24332045; PubMed Central PMCID: PMC3881268.

11. Song Y, Park PMC, Wu L, Ray A, Picaud S, Li D, et al. Development and preclinical validation of a novel covalent ubiquitin receptor Rpn13 degrader in multiple myeloma. Leukemia. 2019. doi: 10.1038/s41375-019-0467-z 30962579.

12. Song Y, Ray A, Li S, Das DS, Tai YT, Carrasco RD, et al. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma. Leukemia. 2016;30(9):1877–86. doi: 10.1038/leu.2016.97 27118409; PubMed Central PMCID: PMC5749253.

13. Anchoori RK, Jiang R, Peng S, Soong RS, Algethami A, Rudek MA, et al. Covalent Rpn13-Binding Inhibitors for the Treatment of Ovarian Cancer. ACS Omega. 2018;3(9):11917–29. doi: 10.1021/acsomega.8b01479 30288466; PubMed Central PMCID: PMC6166221 licensing agreement between Pontifax/PI Therapeutics and Johns Hopkins University, Drs. Anchoori and Roden are entitled to royalties on an invention described in this article. This arrangement has been reviewed and approved by Johns Hopkins University in accordance with its conflict of interest policies.

14. Kisselev AF. A novel bullet hits the proteasome. Cancer Cell. 2013;24(6):691–3. doi: 10.1016/j.ccr.2013.11.016 24332037.

15. Randles L, Anchoori RK, Roden RB, Walters KJ. The Proteasome Ubiquitin Receptor hRpn13 and Its Interacting Deubiquitinating Enzyme Uch37 Are Required for Proper Cell Cycle Progression. J Biol Chem. 2016;291(16):8773–83. doi: 10.1074/jbc.M115.694588 26907685; PubMed Central PMCID: PMC4861445.

16. Soong RS, Anchoori RK, Yang B, Yang A, Tseng SH, He L, et al. RPN13/ADRM1 inhibitor reverses immunosuppression by myeloid-derived suppressor cells. Oncotarget. 2016;7(42):68489–502. doi: 10.18632/oncotarget.12095 27655678; PubMed Central PMCID: PMC5340091.

17. Jiang RT, Yemelyanova A, Xing D, Anchoori RK, Hamazaki J, Murata S, et al. Early and consistent overexpression of ADRM1 in ovarian high-grade serous carcinoma. J Ovarian Res. 2017;10(1):53. doi: 10.1186/s13048-017-0347-y 28784174; PubMed Central PMCID: PMC5547474.

18. Yu GY, Wang X, Zheng SS, Gao XM, Jia QA, Zhu WW, et al. RA190, a Proteasome Subunit ADRM1 Inhibitor, Suppresses Intrahepatic Cholangiocarcinoma by Inducing NF-KB-Mediated Cell Apoptosis. Cell Physiol Biochem. 2018;47(3):1152–66. doi: 10.1159/000490210 29913454.

19. Rao G, Nkepang G, Xu J, Yari H, Houson H, Teng C, et al. Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome. Front Chem. 2018;6:392. doi: 10.3389/fchem.2018.00392 30280096; PubMed Central PMCID: PMC6153970.

20. Fejzo MS, Dering J, Ginther C, Anderson L, Ramos L, Walsh C, et al. Comprehensive analysis of 20q13 genes in ovarian cancer identifies ADRM1 as amplification target. Genes Chromosomes Cancer. 2008;47(10):873–83. doi: 10.1002/gcc.20592 18615678.

21. Fejzo MS, Anderson L, von Euw EM, Kalous O, Avliyakulov NK, Haykinson MJ, et al. Amplification Target ADRM1: Role as an Oncogene and Therapeutic Target for Ovarian Cancer. Int J Mol Sci. 2013;14(2):3094–109. doi: 10.3390/ijms14023094 23377018; PubMed Central PMCID: PMC3588033.

22. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci U S A. 2003;100(17):9946–51. doi: 10.1073/pnas.1334037100 12902539; PubMed Central PMCID: PMC187896.

23. Smith MH, Ploegh HL, Weissman JS. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science. 2011;334(6059):1086–90. doi: 10.1126/science.1209235 22116878; PubMed Central PMCID: PMC3864754.

24. Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Dunner K Jr., Huang P, et al. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res. 2005;65(24):11658–66. doi: 10.1158/0008-5472.CAN-05-2370 16357177.

25. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6. doi: 10.1126/science.1209038 22116877.

26. Maharjan S, Oku M, Tsuda M, Hoseki J, Sakai Y. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci Rep. 2014;4:5896. doi: 10.1038/srep05896 25077633; PubMed Central PMCID: PMC4116626.

27. Starheim KK, Holien T, Misund K, Johansson I, Baranowska KA, Sponaas AM, et al. Intracellular glutathione determines bortezomib cytotoxicity in multiple myeloma cells. Blood Cancer J. 2016;6(7):e446. doi: 10.1038/bcj.2016.56 27421095; PubMed Central PMCID: PMC5141348.

28. Tsuboi K, Bachovchin DA, Speers AE, Spicer TP, Fernandez-Vega V, Hodder P, et al. Potent and selective inhibitors of glutathione S-transferase omega 1 that impair cancer drug resistance. J Am Chem Soc. 2011;133(41):16605–16. doi: 10.1021/ja2066972 21899313; PubMed Central PMCID: PMC3226709.

29. Ramkumar K, Samanta S, Kyani A, Yang S, Tamura S, Ziemke E, et al. Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor. Nat Commun. 2016;7:13084. doi: 10.1038/ncomms13084 27703239; PubMed Central PMCID: PMC5059489.

30. Ianevski A, He L, Aittokallio T, Tang J. SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinformatics. 2017;33(15):2413–5. doi: 10.1093/bioinformatics/btx162 28379339; PubMed Central PMCID: PMC5554616.

31. D'Arcy P, Brnjic S, Olofsson MH, Fryknas M, Lindsten K, De Cesare M, et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med. 2011;17(12):1636–40. doi: 10.1038/nm.2536 22057347.

32. Wang X, Mazurkiewicz M, Hillert EK, Olofsson MH, Pierrou S, Hillertz P, et al. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci Rep. 2016;6:26979. doi: 10.1038/srep26979 27264969; PubMed Central PMCID: PMC4893612.

33. Ri M, Iida S, Nakashima T, Miyazaki H, Mori F, Ito A, et al. Bortezomib-resistant myeloma cell lines: a role for mutated PSMB5 in preventing the accumulation of unfolded proteins and fatal ER stress. Leukemia. 2010;24(8):1506–12. Epub 2010/06/18. leu2010137 [pii] doi: 10.1038/leu.2010.137 20555361.

34. Robak P, Drozdz I, Szemraj J, Robak T. Drug resistance in multiple myeloma. Cancer Treat Rev. 2018;70:199–208. doi: 10.1016/j.ctrv.2018.09.001 30245231.

35. Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, Dalla E, et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol. 2016;18(8):897–909. doi: 10.1038/ncb3380 27347849.

36. Ogiwara H, Takahashi K, Sasaki M, Kuroda T, Yoshida H, Watanabe R, et al. Targeting the Vulnerability of Glutathione Metabolism in ARID1A-Deficient Cancers. Cancer Cell. 2019;35(2):177–90 e8. doi: 10.1016/j.ccell.2018.12.009 30686770.

37. Anglesio MS, Wiegand KC, Melnyk N, Chow C, Salamanca C, Prentice LM, et al. Type-specific cell line models for type-specific ovarian cancer research. PLoS One. 2013;8(9):e72162. doi: 10.1371/journal.pone.0072162 24023729; PubMed Central PMCID: PMC3762837.

38. Strauss SJ, Higginbottom K, Juliger S, Maharaj L, Allen P, Schenkein D, et al. The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res. 2007;67(6):2783–90. doi: 10.1158/0008-5472.CAN-06-3254 17363600.

39. Qin JZ, Ziffra J, Stennett L, Bodner B, Bonish BK, Chaturvedi V, et al. Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res. 2005;65(14):6282–93. doi: 10.1158/0008-5472.CAN-05-0676 16024630.

40. Liu Y, Ye Y. Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res. 2011;21(6):867–83. doi: 10.1038/cr.2011.75 21537343; PubMed Central PMCID: PMC3203708.

41. Luker GD, Pica CM, Song J, Luker KE, Piwnica-Worms D. Imaging 26S proteasome activity and inhibition in living mice. Nat Med. 2003;9(7):969–73. Epub 2003/06/24. doi: 10.1038/nm894 nm894 [pii]. 12819780.

42. Lau DH, Lewis AD, Ehsan MN, Sikic BI. Multifactorial mechanisms associated with broad cross-resistance of ovarian carcinoma cells selected by cyanomorpholino doxorubicin. Cancer Res. 1991;51(19):5181–7. 1717140.

43. Bazzaro M, Anchoori RK, Mudiam MK, Issaenko O, Kumar S, Karanam B, et al. alpha,beta-Unsaturated carbonyl system of chalcone-based derivatives is responsible for broad inhibition of proteasomal activity and preferential killing of human papilloma virus (HPV) positive cervical cancer cells. J Med Chem. 2011;54(2):449–56. Epub 2010/12/29. doi: 10.1021/jm100589p 21186794.

44. Anchoori RK, Khan SR, Sueblinvong T, Felthauser A, Iizuka Y, Gavioli R, et al. Stressing the ubiquitin-proteasome system without 20S proteolytic inhibition selectively kills cervical cancer cells. PLoS One. 2011;6(8):e23888. doi: 10.1371/journal.pone.0023888 21909374; PubMed Central PMCID: PMC3166081.

45. Coughlin K, Anchoori R, Iizuka Y, Meints J, MacNeill L, Vogel RI, et al. Small-molecule RA-9 inhibits proteasome-associated DUBs and ovarian cancer in vitro and in vivo via exacerbating unfolded protein responses. Clin Cancer Res. 2014;20(12):3174–86. doi: 10.1158/1078-0432.CCR-13-2658 24727327; PubMed Central PMCID: PMC4269153.

46. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200. doi: 10.1126/sciadv.1600200 27386546; PubMed Central PMCID: PMC4928883.

47. Chen L, Brewer MD, Guo L, Wang R, Jiang P, Yang X. Enhanced Degradation of Misfolded Proteins Promotes Tumorigenesis. Cell Rep. 2017;18(13):3143–54. doi: 10.1016/j.celrep.2017.03.010 28355566; PubMed Central PMCID: PMC5603913.

48. Bazzaro M, Lee MK, Zoso A, Stirling WL, Santillan A, Shih Ie M, et al. Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis. Cancer Res. 2006;66(7):3754–63. doi: 10.1158/0008-5472.CAN-05-2321 16585202.

49. Aghajanian C, Dizon DS, Sabbatini P, Raizer JJ, Dupont J, Spriggs DR. Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin Oncol. 2005;23(25):5943–9. doi: 10.1200/JCO.2005.16.006 16135465.

50. Ramirez PT, Landen CN Jr., Coleman RL, Milam MR, Levenback C, Johnston TA, et al. Phase I trial of the proteasome inhibitor bortezomib in combination with carboplatin in patients with platinum- and taxane-resistant ovarian cancer. Gynecol Oncol. 2008;108(1):68–71. doi: 10.1016/j.ygyno.2007.08.071 17905421.

51. Cresta S, Sessa C, Catapano CV, Gallerani E, Passalacqua D, Rinaldi A, et al. Phase I study of bortezomib with weekly paclitaxel in patients with advanced solid tumours. Eur J Cancer. 2008;44(13):1829–34. doi: 10.1016/j.ejca.2008.05.022 18640031.

52. Aghajanian C, Blessing JA, Darcy KM, Reid G, DeGeest K, Rubin SC, et al. A phase II evaluation of bortezomib in the treatment of recurrent platinum-sensitive ovarian or primary peritoneal cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2009;115(2):215–20. doi: 10.1016/j.ygyno.2009.07.023 19712963.

53. Parma G, Mancari R, Del Conte G, Scambia G, Gadducci A, Hess D, et al. An open-label phase 2 study of twice-weekly bortezomib and intermittent pegylated liposomal doxorubicin in patients with ovarian cancer failing platinum-containing regimens. Int J Gynecol Cancer. 2012;22(5):792–800. doi: 10.1097/IGC.0b013e318251051a 22635029.

54. Kobrinsky B, Joseph SO, Muggia F, Liebes L, Beric A, Malankar A, et al. A phase I and pharmacokinetic study of oxaliplatin and bortezomib: activity, but dose-limiting neurotoxicity. Cancer Chemother Pharmacol. 2013;72(5):1073–8. doi: 10.1007/s00280-013-2295-6 24048674.

55. Jandial DA, Brady WE, Howell SB, Lankes HA, Schilder RJ, Beumer JH, et al. A phase I pharmacokinetic study of intraperitoneal bortezomib and carboplatin in patients with persistent or recurrent ovarian cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol. 2017;145(2):236–42. doi: 10.1016/j.ygyno.2017.03.013 28341300; PubMed Central PMCID: PMC5706109.

56. Grice GL, Nathan JA. The recognition of ubiquitinated proteins by the proteasome. Cell Mol Life Sci. 2016;73(18):3497–506. doi: 10.1007/s00018-016-2255-5 27137187; PubMed Central PMCID: PMC4980412.

57. Hamazaki J, Hirayama S, Murata S. Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genet. 2015;11(7):e1005401. doi: 10.1371/journal.pgen.1005401 26222436; PubMed Central PMCID: PMC4519129.

58. Berko D, Herkon O, Braunstein I, Isakov E, David Y, Ziv T, et al. Inherent asymmetry in the 26S proteasome is defined by the ubiquitin receptor RPN13. J Biol Chem. 2014;289(9):5609–18. doi: 10.1074/jbc.M113.509380 24429290; PubMed Central PMCID: PMC3937637.

59. Hemmis CW, Heard SC, Hill CP. Phosphorylation of Tyr-950 in the proteasome scaffolding protein RPN2 modulates its interaction with the ubiquitin receptor RPN13. J Biol Chem. 2019;294(25):9659–65. doi: 10.1074/jbc.AC119.008881 31064842; PubMed Central PMCID: PMC6597823.

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden