Efficient processing of raster and vector data

Autoři: Fernando Silva-Coira aff001;  José R. Paramá aff001;  Susana Ladra aff001;  Juan R. López aff001;  Gilberto Gutiérrez aff002
Působiště autorů: Universidade da Coruña, Centro de investigación CITIC, Facultade de Informática, Campus de Elviña, s/n, A Coruña, Spain aff001;  Universidad del Bío-Bío, DCCTI, Chillán, Chile aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226943


In this work, we propose a framework to store and manage spatial data, which includes new efficient algorithms to perform operations accepting as input a raster dataset and a vector dataset. More concretely, we present algorithms for solving a spatial join between a raster and a vector dataset imposing a restriction on the values of the cells of the raster; and an algorithm for retrieving K objects of a vector dataset that overlap cells of a raster dataset, such that the K objects are those overlapping the highest (or lowest) cell values among all objects. The raster data is stored using a compact data structure, which can directly manipulate compressed data without the need for prior decompression. This leads to better running times and lower memory consumption. In our experimental evaluation comparing our solution to other baselines, we obtain the best space/time trade-offs.

Klíčová slova:

Algorithms – Cost models – Data compression – Data management – Decision making – Language – Leaves – Memory


1. Couclelis H. People Manipulate Objects (but Cultivate Fields): Beyond the Raster-Vector Debate in GIS. In: International Conference GIS: from space to territory—theories and methods of spatio-temporal reasoning. London: Springer-Verlag; 1992. p. 65–77.

2. Li Y, Bretschneider TR. Semantic-Sensitive Satellite Image Retrieval. IEEE Transactions on Geoscience and Remote Sensing. 2007;45(4):853–860. doi: 10.1109/TGRS.2007.892008

3. Quartulli M, Olaizola GI. A review of EO image information mining. ISPRS Journal of Photogrammetry and Remote Sensing. 2013;75:11–28. doi: 10.1016/j.isprsjprs.2012.09.010

4. Grumbach S, Rigaux P, Segoufin L. Manipulating interpolated data is easier than you thought. In: 26th International Conference on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann Publishers Inc.; 2000. p. 156–165.

5. Environmental Systems Research Institute Inc. Zonal Statistics Help—ArcGis for Desktop; 2016. Available from: http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Zonal_Statistics.

6. GRASS development team. GRASS GIS manual:v.rast.stats; 2016. Available from: https://grass.osgeo.org/grass72/manuals/v.rast.stats.html.

7. Corral A, Vassilakopoulos M, Manolopoulos Y. Algorithms for joining R-trees and linear region quadtrees. In: 6th International Symposium on Advances in Spatial Databases. London: Springer-Verlag; 1999. p. 251–269.

8. Corral A, Torres M, Vassilakopoulos M, Manolopoulos Y. Predictive Join Processing between Regions and Moving Objects. In: 12th East European conference on Advances in Databases and Information Systems. Berlin, Heidelberg, Germany: Springer-Verlag; 2008. p. 46–61.

9. Brisaboa NR, de Bernardo G, Gutiérrez G, Luaces MR, Paramá JR. Efficiently Querying Vector and Raster Data. The Computer Journal. 2017;60(9):1395–1413. doi: 10.1093/comjnl/bxx011

10. Eldawy A, Niu L, Haynes D, Su Z. Large Scale Analytics of Vector+Raster Big Spatial Data. In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. SIGSPATIAL’17; 2017. p. 62:1–62:4.

11. Plattner H, Zeier A. In-Memory Data Management: Technology and Applications. Heidelberg, Germany: Springer-Verlag Berlin; 2012.

12. de Bernardo G, Álvarez-García S, Brisaboa NR, Navarro G, Pedreira O. Compact Querieable Representations of Raster Data. In: 20th International Symposium on String Processing and Information Retrieval. New York, NY: Springer-Verlag; 2013. p. 96–108.

13. Ladra S, Paramá JR, Silva-Coira F. Compact and queryable representation of raster datasets. In: 28th International Conference on Scientific and Statistical Database Management. New York, NY, USA: ACM; 2016. p. 15:1–15:12.

14. Ladra S, Paramá JR, Silva-Coira F. Scalable and Queryable Compressed Storage Structure for Raster Data. Information Systems. 2017;72:179–204. doi: 10.1016/j.is.2017.10.007

15. Pinto A, Seco D, Gutiérrez G. Improved Queryable Representations of Rasters. In: Data Compression Conference. IEEE. IEEE; 2017. p. 320–329.

16. Navarro G. Compact Data Structures—A practical approach. New York, NY: Cambridge University Press; 2016.

17. Plattner H. A Course in In-Memory Data Management: The Inner Mechanics of In-Memory Databases. Heidelberg, Germany: Springer-Verlag Berlin; 2013.

18. Guttman A. R-trees: A Dynamic Index Structure for Spatial Searching. In: 1984 ACM SIGMOD international conference on Management of data. New York, NY: ACM; 1984. p. 47–57.

19. Manolopoulos Y, Nanopoulos A, Papadopoulos AN, Theodoridis Y. R-trees: Theory and Applications (Advanced Information and Knowledge Processing). Secaucus, NJ: Springer-Verlag New York; 2005.

20. Worboys MF, Duckham M. GIS: a computing perspective. Boca Raton, FL: CRC press; 2004.

21. ISO. Geographic information—Spatial schema. Geneva, Switzerland; 2003. ISO 19107:2003.

22. ISO. Geographic information—Schema for coverage geometry and functions. Geneva, Switzerland; 2005. ISO 19123:2005.

23. OGC. OpenGIS Web Feature Service 2.0 Interface Standard. Wayland, MA; 2010. OGC 09-025r2.

24. OGC. OpenGIS Web Coverage Service 2.0 Interface Standard—Core: Corrigendum. Wayland, MA; 2012. OGC 09-110r4.

25. Tomlin CD, Berry JK. Mathematical structure for cartographic modeling in environmental analysis. In: the American Congress on Surveying and Mapping 39th Annual Meeting. ACSM; 1979. p. 269–283.

26. Tomlin DC. Geographic Information Systems and Cartographic Modeling. Englewood Cliffs, NJ: Prentice-Hall; 1990.

27. Svensson P, Zhexue H. Geo–SAL: A Query Language for Spatial Data Analysis. In: SSD 1991. vol. 525 of LNCS. Berlin, Heidelberg: Springer; 1991. p. 119–142.

28. Baumann P, Dehmel A, Furtado P, Ritsch R, Widmann N. The Multidimensional Database System RasDaMan. In: 1998 ACM SIGMOD international conference on Management of data. New York, NY: ACM; 1998. p. 575–577.

29. Vaisman A, Zimányi E. A multidimensional model representing continuous fields in spatial data warehouses. In: 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM; 2009. p. 168–177.

30. Brown PG. Overview of SciDB: large scale array storage, processing and analysis. In: 2010 ACM SIGMOD International Conference on Management of data. New York, NY: ACM press; 2010. p. 963–968.

31. Brisaboa NR, Ladra S, Navarro G. Compact Representation of Web Graphs with Extended Functionality. Information Systems. 2014;39(1):152–174. doi: 10.1016/j.is.2013.08.003

32. Klinger A. Patterns and search statistics. In: Symposium Held at The Center for Tomorrow The Ohio State University. New York, NY, USA: Academic Press; 1971. p. 303–337.

33. Klinger A, Dyer CR. Experiments on Picture Representation Using Regular Decomposition. Computer Graphics Image Processing. 1976;5(1):68–105. doi: 10.1016/S0146-664X(76)80006-8

34. Samet H. Foundations of Multimensional and Metric Data Structures. San Francisco, CA: Morgan Kaufmann; 2006.

35. Jacobson G. Space-efficient static trees and graphs. In: 30th Annual Symposium on Foundations of Computer Science. Washington, DC, USA: IEEE Computer Society; 1989. p. 549–554.

36. Brisaboa NR, Ladra S, Navarro G. DACs: Bringing direct access to variable-length codes. Information Processing and Management. 2013;49:392–404. doi: 10.1016/j.ipm.2012.08.003

37. Seidemann M, Seeger B. ChronicleDB: A High-Performance Event Store. In: 20th International Conference on Extending Database Technology; 2017. p. 144–155.

38. Moerkotte G. Small Materialized Aggregates: A Light Weight Index Structure for Data Warehousing. In: 24rd International Conference on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann Publishers Inc.; 1998. p. 476–487.

39. Athanassoulis M, Ailamaki A. BF-tree: Approximate Tree Indexing. In: 40th International Conference on Very Large Databases. vol. 7. VLDB Endowment; 2014. p. 1881–1892.

40. Brisaboa NR, de Bernardo G, Konow R, Navarro G, Seco D. Aggregated 2D range queries on clustered points. Information Systems. 2016;60:34–49. doi: 10.1016/j.is.2016.03.004

41. Lee C, Yang M, Aydt R. NetCDF-4 Performance Report. Technical report, HDF Group; 2008.

42. Deutsch LP. RFC 1951: DEFLATE Compressed Data Format Specification version 1.3; 1996.

43. Rigaux P, Scholl M, Voisard A. Spatial databases: with application to GIS. Morgan Kauffman; 2002.

44. Brinkhoff T, Kriegel HP, Seeger B. Efficient Processing of Spatial Joins Using R-trees. SIGMOD Record. 1993;22(2):237–246. doi: 10.1145/170036.170075

45. Theodoridis Y, Stefanakis E, Sellis TK. Efficient Cost Models for Spatial Queries Using R-Trees. IEEE Trans Knowl Data Eng. 2000;12(1):19–32. doi: 10.1109/69.842247

46. Theodoridis Y, Stefanakis E, Sellis TK. Cost Models for Join Queries in Spatial Databases. In: Proceedings of the Fourteenth International Conference on Data Engineering. ICDE’98. Washington, DC, USA: IEEE Computer Society; 1998. p. 476–483.

47. Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M. Cost Models for Distance Joins Queries Using R-trees. Data and Knowledge Engineering. 2006;57(1):1–36. doi: 10.1016/j.datak.2005.03.004

48. González R, Grabowski S, Mäkinen V, Navarro G. Practical Implementation of Rank and Select Queries. In: 4th Workshop on Efficient and Experimental Algorithms. vol. 0109. Berlin, Heidelberg: Springer-Verlag; 2005. p. 27–38.

49. Tomlin CD. Map algebra: one perspective. Landscape and Urban Planning. 1994;30(1-2):3–12. doi: 10.1016/0169-2046(94)90063-9

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden