Antimicrobial activity of Asteraceae species against bacterial pathogens isolated from postmenopausal women

Autoři: Marcela Oliveira Chiavari-Frederico aff001;  Lidiane Nunes Barbosa aff003;  Isabela Carvalho dos Santos aff003;  Gustavo Ratti da Silva aff003;  Alanna Fernandes de Castro aff001;  Wanessa de Campos Bortolucci aff005;  Lorena Neris Barboza aff001;  Caio Franco de Araújo Almeida Campos aff006;  José Eduardo Gonçalves aff006;  Jacqueline Vergutz Menetrier aff002;  Ezilda Jacomassi aff002;  Zilda Cristiani Gazim aff005;  Samantha Wietzikoski aff001;  Francislaine Aparecida dos Reis Lívero aff002;  Evellyn Claudia Wietzikoski Lovato aff001
Působiště autorů: Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, PR, Brazil aff001;  Medicinal Plants and Phytotherapics in Basic Attention, Paranaense University, Umuarama, PR, Brazil aff002;  Laboratory of Preventive Veterinary Medicine and Public Health, Paranaense University, Umuarama, PR, Brazil aff003;  Animal Sciences with Emphasis on Bioactive Products, Paranaense University, Umuarama, PR, Brazil aff004;  Biotechnology Applied to Agriculture, Chemistry Laboratory of Natural Products, Paranaense University, Umuarama, PR, Brazil aff005;  Clean Technologies, University Center of Maringa, Maringa, PR, Brazil aff006;  Technology and Food Safety and Cesumar Institute of Science, Technology and Innovation – ICETI, University Center of Maringa, Maringa, PR, Brazil aff007
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227023



Investigation of the antibacterial action of aqueous extracts of Bidens sulphurea, Bidens pilosa, and Tanacetum vulgare, species of Asteraceae family that are popularly used for the treatment of genito-urinary infection.


The minimum inhibitory concentration (MIC) and minimal bacterial concentration (MBC) of the extracts against standard strains of Staphylococcus aureus (ATCC25923), Enterococcus faecalis (ATCC29212), Escherichia coli (ATCC25922), and Pseudomonas aeruginosa (ATCC27853) and against bacteria that were isolated from cultures of vaginal secretions and urine from menopausal women with a diagnosis of recurrent urinary tract infections (rUTI) were determined by broth microdilution.


The MIC values of the three extracts against Gram-positive and Gram-negative standard bacterial strains ranged from 7.81 to 125.00 mg ml-1, and the MBC values ranged from 7.81 to 500.00 mg ml-1. However, B. sulphurea was more efficient. In the urine samples, the three extracts inhibited the growth of coagulase-negative Staphylococcus spp., and the B. pilosa was the most active extract against E. coli compared with the other ones. For the vaginal secretion samples, no significant differences in the inhibition of coagulase-positive Staphylococcus spp. and P. mirabilis were found among the extracts. T. vulgare and B. sulphurea were more effective in inhibiting coagulase-negative Staphylococcus spp. compared with B. pilosa. E. coli was more susceptible to the B. sulphurea extract compared with the B. pilosa and T. vulgare extracts.


The present results suggested the potential medicinal use of Asteraceae species, especially B. sulphurea, as therapeutic agents against rUTI-related bacteria.

Klíčová slova:

Antibiotic resistance – Antibiotics – Gram negative bacteria – Gram positive bacteria – Secretion – Staphylococcus – Urine – Proteus mirabilis


1. Caretto M, Giannini A, Russo E, Simoncini T. Preventing urinary tract infections after menopause without antibiotics. Maturitas. Elsevier Ireland Ltd; 2017;99: 43–46. doi: 10.1016/j.maturitas.2017.02.004 28364867

2. Jhang JF, Kuo HC. Recent advances in recurrent urinary tract infection from pathogenesis and biomarkers to prevention. Tzu Chi Med J. 2017;29: 131–137.

3. Costa LC, de F Belém L, de F e Silva PM, dos S Pereira H, da Silva Júnior ED, Leite TR, et al. Infecções urinárias em pacientes ambulatoriais: prevalência e perfil de resistência aos antimicrobianos. Rbac. 2010;42: 175–180.

4. Mazili PML, Carvalho Júnior AP, Almeida FG. Infecção do trato urinário. Rev Bras Med. 2011;68: 74–81.

5. Blake J. Menopause: evidence-based practice. Best Pract Res Clin Obstet Gynaecol. 2006;20: 799–839. doi: 10.1016/j.bpobgyn.2006.07.001 17084674

6. Bessada SMF, Barreira JCM, Oliveira MBPP. Asteraceae species with most prominent bioactivity and their potential applications: A review. Ind Crops Prod. Elsevier B.V.; 2015;76: 604–615. doi: 10.1016/j.indcrop.2015.07.073

7. Borges CC, Matos TF, Moreira J, Rossato AE, Zanette VC, Amaral PA. Bidens pilosa L. (Asteraceae): traditional use in a community of southern Brazil. Rev Bras Plantas Med. 2013;15: 34–40. doi: 10.1590/S1516-05722013000100004

8. Coelho De Souza G, Haas APS, Von Poser GL, Schapoval EES, Elisabetsky E. Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J Ethnopharmacol. 2004;90: 135–143. doi: 10.1016/j.jep.2003.09.039 14698521

9. Oliveira DF, Pereira AC, Figueiredo HCP, Carvalho DA, Silva G, Nunes AS, et al. Antibacterial activity of plant extracts from Brazilian southest region. Fitoterapia. 2007;78: 142–145. doi: 10.1016/j.fitote.2006.09.027 17169500

10. Medeiros NF, Seixas DP, Batista JC, Almeida WR, Santos JC. Density-dependent regulation in a weed Bidens sulphurea (Cav.) Sch. Bip. (Asteraceae). J Environ Anal Prog. 2017;2: 7–10. doi: 10.24221/jeap.2.3.2017.1430.203-211

11. Dias HJ, Vieira TM, Carvalho CE, Aguiar GP, Wakabayashi KAl, Turatti ICC, et al. Screening of Selected Plant-Derived Extracts for Their Antimicrobial Activity against Oral Pathogens. Int J Complement Alt Med. 2017; 6: 00188.

12. Oliveira SGD, Moura FRR, Demarco FF, Nascente PS, Pino ABD, Lund RG. An ethnomedicinal survey on phytotherapy with professionals and patients from Basic Care Units in the Brazilian Unified Health System. Journal of Ethnopharmacology. 2012; 140: 428–437. doi: 10.1016/j.jep.2012.01.054 22338646

13. Bartolome AP, Villaseñor IM, Yang WC. Bidens pilosa L. (Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based Complement Altern Med. 2013;2013.

14. Xie G, Schepetkin IA, Quinn MT. Immunomodulatory activity of acidic polysaccharides isolated from Tanacetum vulgare L. Intenational Immunopharmacol. 2007;7: 1639–1650.

15. Neilson JP. Oestrogens for preventing recurrent urinary tract infection in postmenopausal women. Obstet Gynecol. 2008;112: 689–690. doi: 10.1097/AOG.0b013e318185f7a5 18757671

16. Persu C, Chapple CR, Cauni V, Gutue S, Geavlete P. Pelvic Organ Prolapse Quantification System (POP-Q)—a new era in pelvic prolapse staging. J Med Life. 2011;4: 75–81. doi: 10.1016/j.ejogrb.2013.12.003 21505577

17. Thomas-White K, Forster SC, Kumar N, Van Kuiken M, Putonti C, Stares MD, et al. Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat Commun. Springer US; 2018;9: 1–7. doi: 10.1038/s41467-018-03968-5 29674608

18. Koneman E, Allen S. Diagnostico Microbiologico: Texto Y Atlas En Color. 6th ed. Médica, Panamericana, editors. Buenos Aires: Médica Panamericana; 2008.

19. Clinical and Laboratory Standards Institute (2015) Performance standards for antimicrobial susceptibility testing: 25rd informational supplement (M100-S25), CLSI, Wayne, PA.

20. Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983;46: 165–170. doi: 10.1007/s11356-014-3887-3 6351743

21. Adams RP. Identification of essential oils components by gas chromatography/ mass spectroscopy. 4th ed. Allured Bussiness Media, USA; 2012.

22. Duarte MCT, Figueira GM, Sartoratto A, Rehder VLG, Delarmelina C. Anti-Candida activity of Brazilian medicinal plants. Journal of Ethnopharmacology; 2005;97: 305–311. doi: 10.1016/j.jep.2004.11.016 15707770

23. Silva DR, Endo EH, Nakamura CV, Svidzinski TIE, De Souza A, et al. Chemical composition and antimicrobial properties of Piper ovatum Vahl. Molecules. 2009;14: 1171–1182. doi: 10.3390/molecules14031171 19325517

24. Raz R. Urinary tract infection in postmenopausal women. Korean J Urol. 2011;52: 801–808. doi: 10.4111/kju.2011.52.12.801 22216390

25. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13: 269–284. doi: 10.1038/nrmicro3432 25853778

26. Kostakioti M, Hultgren SJ, Hadjifrangiskou M. Molecular blueprint of uropathogenic Escherichia coli virulence provides clues toward the development of anti-virulence therapeutics. Virulence. 2012;3: 592–593. doi: 10.4161/viru.22364 23154288

27. Sharmeen R, Hossain MN, Rahman MM, Foysal MJ, Miah MF. In-vitro antibacterial activity of herbal aqueous extract against multi-drug resistant Klebsiella sp. isolated from human clinical samples. Int Curr Pharm J. 2012;1: 133–137.

28. Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine. 2008;15: 639–652. doi: 10.1016/j.phymed.2008.06.008 18599280

29. Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002;20: 522–531. doi: 10.1016/s0167-7799(02)02080-2 12443874

30. Zeeuwen PLJM, Kleerebezem M, Timmerman HM, Schalkwijk J. Microbiome and skin diseases. Curr Opin Allergy Clin Immunol. 2013;13: 514–520. doi: 10.1097/ACI.0b013e328364ebeb 23974680

31. Moore KN, Day RA, Albers M. Pathogenesis of urinary tract infections: A review. J Clin Nurs. 2002;11: 568–574. doi: 10.1046/j.1365-2702.2002.00629.x 12201883

32. Martino MDV, Toporovski J, Mímica IM. Métodos bacteriológicos de triagem em infecções do trato urinário na infância e adolescência. Jornal Brasileiro de Nefrologia. 2002; 24: 71–80.

33. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010;7: 653–660. doi: 10.1038/nrurol.2010.190 21139641

34. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8: 1–24.

35. Knight JA. Review: Free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000;30: 145–158. doi: 10.1016/j.jascer.2014.08.004 10807157

36. Silva BP, Nepomuceno MP, Varela RM, Torres A, Molinillo JMG, Alves PLCA, et al. Phytotoxicity Study on Bidens sulphurea Sch. Bip. as a Preliminary Approach for Weed Control. J. Agric. Food Chem. 2017; 65, 25: 5161–5172. 28605187

37. Deba F, Xuan DT, Yasuda M, Tawata S. Herbicidal and fungicidal activities and identification of potential phytotoxins from Bidens pilosa L. var. radiata Scherff. Weed Biology and Management 2007; 7, 77–83.

38. Bartolome AP, Villaseñor IM, Yang WC. Bidens pilosa L. (Asteraceae): Botanical Properties, Traditional Uses, Phytochemistry, and Pharmacology. Evidence-Based Complementary and Alternative Medicine. 2013; 1–51.

39. Baranauskienė R, Kazernavičiūtė R, Pukalskienė M, Maždžierienė R, Venskutonis PR. Agrorefinery of Tanacetum vulgare L. into valuable products and evaluation of their antioxidant properties and phytochemical composition. Industrial Crops and Products. 2014;60, 113–122.

40. Rosselli S, Bruno M, Raimondo FM, Spadaro V, Varol M, Koparal AT, et al. Cytotoxic Effect of Eudesmanolides Isolated from Flowers of Tanacetum vulgare ssp. Siculum. Molecules. 2012; 17, 8186–8195. 22777187

41. Sridevi VK, Chouhan HS, Singh NK, Singh SK. Antioxidant and hepatoprotective effects of ethanol extract of Vitex glabrata on carbon tetrachloride-induced liver damage in rats. Nat Prod Res. 2012;26: 1135–1140. doi: 10.1080/14786419.2011.560849 22054305

42. Hernández MM, Heraso C, Villarreal ML, Vargas-Arispuro I, Aranda E. Biological activities of crude plant extracts from Vitex trifolia L. (Verbenaceae). J Ethnopharmacol. 1999;67: 37–44. doi: 10.1016/s0378-8741(99)00041-0 10616958

43. Tsuchiya H, Sato M, Miyazaki T, Fujiwara S, Tanigaki S, Ohyama M, et al. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J Ethnopharmacol. 1996;50: 27–34. doi: 10.1016/0378-8741(96)85514-0 8778504

44. Sen A, Dhavan P, Shukla KK, Singh S, Tejovathi G. Analysis of IR, NMR and Antimicrobial Activity of β-Sitosterol Isolated from Momordica charantia. Sci Secur J Biotechnol. 2012;1: 9–13.

45. Chattopadhyay D, Arunachalam G, Mandal AB, Sur TK, Mandal SC, Bhattacharya SK. Antimicrobial and anti-inflammatory activity of folklore: Mallotus peltatus leaf extract. J Ethnopharmacol. 2002;82: 229–237. doi: 10.1016/s0378-8741(02)00165-4 12242000

46. Balan RS, Padmini V, Lavanya A, Ponnuvel K. Evaluation of antimicrobial activity of glycinate and carbonate derivatives of cholesterol: Synthesis and characterization. Saudi Pharm J. 2016;24: 658–668. doi: 10.1016/j.jsps.2015.05.003 27829808

47. Choi K, Koci J, Ortega M, Jeffery B, Riviere J, Monteiro-Riviere N. Mechanistic Toxicity Assessment of Hexahydroisohumulone in Canine Hepatocytes, Renal Proximal Tubules, Bone Marrow-Derived Mesenchymal Stem Cells, and Enterocyte-like Cells. Int J Vet Heal Sci Res. 2016;04: 88–103. doi: 10.19070/2332-2748-1600022

48. Alaagib RMO, Ayoub SMH. On the chemical composition and antibacterial activity of Saussurea lappa (Asteraceae). Pharma Innov J. 2015;4: 73–76.

49. Kannan RRR, Arumugam R, Anantharaman P. Chemical composition and antibacterial activity of Indian seagrasses against urinary tract pathogens. Food Chem. Elsevier Ltd; 2012;135: 2470–2473. doi: 10.1016/j.foodchem.2012.07.070 22980830

Článek vyšel v časopise


2020 Číslo 1