Tripartite factors leading to molecular divergence between human and murine smooth muscle


Autoři: Soo Jung Lee aff001;  Sabrina Blanchett-Anderson aff001;  Simon G. Keep aff001;  Mitchell B. Gasche aff001;  Michael M. Wang aff001
Působiště autorů: Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America aff001;  Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America aff002;  Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227672

Souhrn

A large number of pre-clinical and developmental investigations involve experimental vertebrate animals, of which mice have emerged as a favored organism. Recognition of the differences between humans and mice is essential for assessment of the relevance of animal studies to humans. The primary purpose of this study was to gauge the conservation between human and mouse vascular smooth muscle cell (VSMC) proteins mined from an analysis of the Human Protein Atlas. Two comparison were made: a) immunohistochemistry for 16 proteins in brain, heart, esophagus, bladder, stomach, lung, kidney, and aorta enabled comparison between human and mouse of protein localization in VSMC and non-vascular SMC; and b) multi-species primary protein sequence analysis of an expanded set vascular molecules enabled comparison between VSMC sequences among vertebrate species. In total, three dimensions of diversity were uncovered. First, a significant number of factors show human/mouse differences in cellular expression; these differences occurred in both VSMC and non-vascular SMC in an organ and cell-type dependent fashion. Many markers demonstrated notable cell-to-cell and regional heterogeneity in VSMC of the aorta and non-vascular SMC of the esophagus, bladder, and stomach. Second, species specificity can arise by genetic deletions as exemplified by the human protein adipogenesis regulatory factor (ADIRF), which is not present due to a large sequence gap in mice. Third, we describe significant cross-species protein sequence divergence in selected VSMC proteins which may result in altered orthologue function. In a sample of 346 vascular molecules, 15% demonstrate incomplete vertebrate species gene conservation. Divergence of predicted human/mouse VSMC protein sequences is higher than for endothelial proteins in all species examined. In the future, each of these three cross-species differences could be neutralized using gene manipulation, resulting in improved translational potential of murine experimental models.

Klíčová slova:

Cats – Dogs – Immunohistochemistry techniques – Mouse models – Swine – Vertebrates – Platypus – Orangutans


Zdroje

1. Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PloS one. 2010;5(10):e13741. doi: 10.1371/journal.pone.0013741 21060791; PubMed Central PMCID: PMC2966423.

2. Enerson BE, Drewes LR. The rat blood-brain barrier transcriptome. J Cereb Blood Flow Metab. 2006;26(7):959–73. doi: 10.1038/sj.jcbfm.9600249 16306934.

3. Lee SJ, Kwon S, Gatti JR, Korcari E, Gresser TE, Felix PC, et al. Large-scale identification of human cerebrovascular proteins: Inter-tissue and intracerebral vascular protein diversity. PloS one. 2017;12(11):e0188540. doi: 10.1371/journal.pone.0188540 29190776; PubMed Central PMCID: PMC5708641.

4. Pardridge WM. Molecular biology of the blood-brain barrier. Molecular biotechnology. 2005;30(1):57–70. doi: 10.1385/MB:30:1:057 15805577.

5. Crossley NA, Sena E, Goehler J, Horn J, van der Worp B, Bath PM, et al. Empirical evidence of bias in the design of experimental stroke studies: a metaepidemiologic approach. Stroke. 2008;39(3):929–34. Epub 2008/02/02. STROKEAHA.107.498725 [pii] doi: 10.1161/STROKEAHA.107.498725 18239164.

6. Feuerstein GZ, Zaleska MM, Krams M, Wang X, Day M, Rutkowski JL, et al. Missing steps in the STAIR case: a Translational Medicine perspective on the development of NXY-059 for treatment of acute ischemic stroke. J Cereb Blood Flow Metab. 2008;28(1):217–9. Epub 2007/06/21. 9600516 [pii] doi: 10.1038/sj.jcbfm.9600516 17579658.

7. O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77. Epub 2006/02/03. doi: 10.1002/ana.20741 16453316.

8. Ayata C. CADASIL: experimental insights from animal models. Stroke. 2010;41(10 Suppl):S129–34. doi: 10.1161/STROKEAHA.110.595207 20876488; PubMed Central PMCID: PMC2953736.

9. Joutel A. Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. Bioessays. 2011;33(1):73–80. doi: 10.1002/bies.201000093 20967782.

10. Joutel A, Faraci FM. Cerebral small vessel disease: insights and opportunities from mouse models of collagen IV-related small vessel disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2014;45(4):1215–21. doi: 10.1161/STROKEAHA.113.002878 24503668; PubMed Central PMCID: PMC3966958.

11. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8. 24489990; PubMed Central PMCID: PMC3902221.

12. Olbe L, Carlsson E, Lindberg P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discov. 2003;2(2):132–9. doi: 10.1038/nrd1010 12563304.

13. Breschi A, Gingeras TR, Guigo R. Comparative transcriptomics in human and mouse. Nat Rev Genet. 2017;18(7):425–40. doi: 10.1038/nrg.2017.19 28479595; PubMed Central PMCID: PMC6413734.

14. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. Journal of neurochemistry. 2011;117(2):333–45. doi: 10.1111/j.1471-4159.2011.07208.x 21291474.

15. Wang MM, Zhang X, Lee SJ, Maripudi S, Keep RF, Johnson AM, et al. Expression of periaxin (PRX) specifically in the human cerebrovascular system: PDZ domain-mediated strengthening of endothelial barrier function. Scientific reports. 2018;8(1):10042. doi: 10.1038/s41598-018-28190-7 29968755.

16. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Molecular & cellular proteomics: MCP. 2005;4(12):1920–32. doi: 10.1074/mcp.M500279-MCP200 16127175.

17. Wang MM, Lee SJ, Kim J, Majersik JJ, Blaivas M, Borjigin J. ABO blood antigens define human cerebral endothelial diversity. Neuroreport. 2013;24(2):79–83. doi: 10.1097/WNR.0b013e32835c93a2 23262469.

18. Zhang X, Lee SJ, Young KZ, Josephson DA, Geschwind MD, Wang MM. Latent NOTCH3 epitopes unmasked in CADASIL and regulated by protein redox state. Brain Res. 2014;1583:230–6. Epub 2014/08/26. doi: 10.1016/j.brainres.2014.08.018 25150590; PubMed Central PMCID: PMC4206828.

19. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767–801. Epub 2004/07/23. doi: 10.1152/physrev.00041.2003 84/3/767 [pii]. 15269336.

20. Kelly JM, Waterhouse NJ, Cretney E, Browne KA, Ellis S, Trapani JA, et al. Granzyme M mediates a novel form of perforin-dependent cell death. J Biol Chem. 2004;279(21):22236–42. doi: 10.1074/jbc.M401670200 15028722.

21. Hollestelle MJ, Lai KW, van Deuren M, Lenting PJ, de Groot PG, Sprong T, et al. Cleavage of von Willebrand factor by granzyme M destroys its factor VIII binding capacity. PLoS One. 2011;6(9):e24216. doi: 10.1371/journal.pone.0024216 21909423; PubMed Central PMCID: PMC3164717.

22. Pishesha N, Thiru P, Shi J, Eng JC, Sankaran VG, Lodish HF. Transcriptional divergence and conservation of human and mouse erythropoiesis. Proc Natl Acad Sci U S A. 2014;111(11):4103–8. doi: 10.1073/pnas.1401598111 24591581; PubMed Central PMCID: PMC3964037.

23. Lin S, Lin Y, Nery JR, Urich MA, Breschi A, Davis CA, et al. Comparison of the transcriptional landscapes between human and mouse tissues. Proc Natl Acad Sci U S A. 2014;111(48):17224–9. doi: 10.1073/pnas.1413624111 25413365; PubMed Central PMCID: PMC4260565.

24. Gilad Y, Mizrahi-Man O. A reanalysis of mouse ENCODE comparative gene expression data. F1000Res. 2015;4:121. doi: 10.12688/f1000research.6536.1 26236466; PubMed Central PMCID: PMC4516019.

25. Menon P, Fisher EA. Immunostaining of Macrophages, Endothelial Cells, and Smooth Muscle Cells in the Atherosclerotic Mouse Aorta. Methods Mol Biol. 2015;1339:131–48. doi: 10.1007/978-1-4939-2929-0_9 26445786; PubMed Central PMCID: PMC4736500.

26. Johansson B, Eriksson A, Virtanen I, Thornell LE. Intermediate filament proteins in adult human arteries. Anat Rec. 1997;247(4):439–48. doi: 10.1002/(SICI)1097-0185(199704)247:4<439::AID-AR1>3.0.CO;2-M 9096782.

27. Nanaev AK, Shirinsky VP, Birukov KG. Immunofluorescent study of heterogeneity in smooth muscle cells of human fetal vessels using antibodies to myosin, desmin, and vimentin. Cell Tissue Res. 1991;266(3):535–40. doi: 10.1007/bf00318595 1811882.

28. Kacem K, Seylaz J, Aubineau P. Differential processes of vascular smooth muscle cell differentiation within elastic and muscular arteries of rats and rabbits: an immunofluorescence study of desmin and vimentin distribution. Histochem J. 1996;28(1):53–61. doi: 10.1007/bf02331427 8866648.

29. Kaur H, Carvalho J, Looso M, Singh P, Chennupati R, Preussner J, et al. Single-cell profiling reveals heterogeneity and functional patterning of GPCR expression in the vascular system. Nat Commun. 2017;8:15700. doi: 10.1038/ncomms15700 28621310; PubMed Central PMCID: PMC5481776.

30. Ni Y, Ji C, Wang B, Qiu J, Wang J, Guo X. A Novel pro-adipogenesis factor abundant in adipose tissues and over-expressed in obesity acts upstream of PPARgamma and C/EBPalpha. Journal of bioenergetics and biomembranes. 2013;45(3):219–28. doi: 10.1007/s10863-012-9492-6 23239344.

31. Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GL, Wides R, et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science. 2002;296(5573):1661–71. doi: 10.1126/science.1069193 12040188.

32. Rane RV, Oakeshott JG, Nguyen T, Hoffmann AA, Lee SF. Orthonome—a new pipeline for predicting high quality orthologue gene sets applicable to complete and draft genomes. BMC Genomics. 2017;18(1):673. doi: 10.1186/s12864-017-4079-6 28859620; PubMed Central PMCID: PMC5580312.

33. Makalowski W, Zhang J, Boguski MS. Comparative analysis of 1196 orthologous mouse and human full-length mRNA and protein sequences. Genome Res. 1996;6(9):846–57. doi: 10.1101/gr.6.9.846 8889551.

34. Makalowski W, Boguski MS. Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc Natl Acad Sci U S A. 1998;95(16):9407–12. doi: 10.1073/pnas.95.16.9407 9689093; PubMed Central PMCID: PMC21351.


Článek vyšel v časopise

PLOS One


2020 Číslo 1