The 24-hour urinary cortisol in post-traumatic stress disorder: A meta-analysis

Autoři: Xiongfeng Pan aff001;  Atipatsa C. Kaminga aff001;  Shi Wu Wen aff003;  Zhipeng Wang aff001;  Xiaoli Wu aff001;  Aizhong Liu aff001
Působiště autorů: Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China aff001;  Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi aff002;  Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa, Ontario, Canada aff003;  Ottawa Hospital Research Institute, Ottawa, Ontario, Canada aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article



Previous studies found inconsistent results on the relationship between post-traumatic stress disorder (PTSD) and concentrations of 24-hour (24-h) urinary cortisol. This study performed a systematic review and meta-analysis to summarize previous findings on this relationship.


We searched in the databases of Web of Science, PubMed, Embase, and Psyc-ARTICLES for articles published before September 2018. We used the random-effects model with restricted maximum-likelihood estimator to synthesize the effect sizes by calculating the standardized mean difference (SMD) and assessing its significance.


Six hundred and nineteen articles were identified from the preceding databases and 20 of them were included in the meta-analysis. Lower concentrations of 24-h urinary cortisol were observed in patients with PTSD when compared with the controls (SMD = -0.49, 95%CI [-0.91; -0.07], p = 0.02). Subgroup analysis revealed that the concentrations of 24-h urinary cortisol were lower in PTSD patients than in the controls for studies that included female participants or studies that included participants from the United States of America.


Overall, decreased levels of 24-h urinary cortisol were linked with the pathophysiology of PTSD. Nonetheless, more studies should be conducted to validate the molecular underpinnings of urine cortisol degeneration in PTSD.

Klíčová slova:

Cortisol – Database searching – Metaanalysis – Post-traumatic stress disorder – Systematic reviews – United States – Urine – Radioimmunoassays


1. Franklin CL, Raines AM, Chambliss JL, Walton JL and Maieritsch KP. Examining various subthreshold definitions of PTSD using the Clinician Administered PTSD Scale for DSM-5. J Affect Disord.2018; 234: 256–260. doi: 10.1016/j.jad.2018.03.001 29550742

2. Feduccia AA and Mithoefer MC. MDMA-assisted psychotherapy for PTSD: Are memory reconsolidation and fear extinction underlying mechanisms? Prog Neuropsychopharmacol Biol Psychiatry.2018; 84: 221–228. doi: 10.1016/j.pnpbp.2018.03.003 29524515

3. Ke J, Zhang L, Qi R, Xu Q, Zhong Y and Liu T et al. Typhoon-Related Post-Traumatic Stress Disorder and Trauma Might Lead to Functional Integration Abnormalities in Intra- and Inter-Resting State Networks: a Resting-State Fmri Independent Component Analysis. Cellular Physiology and Biochemistry.2018; 48: 99–110. doi: 10.1159/000491666 30001548

4. Dikmen-Yildiz P, Ayers S and Phillips L. Longitudinal trajectories of post-traumatic stress disorder (PTSD) after birth and associated risk factors. J Affect Disord.2018; 229: 377–385. doi: 10.1016/j.jad.2017.12.074 29331697

5. Mithoefer MC, Mithoefer AT, Feduccia AA, Jerome L, Wagner M and Wymer J et al. 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy for post-traumatic stress disorder in military veterans, firefighters, and police officers: a randomised, double-blind, dose-response, phase 2 clinical trial. Lancet Psychiatry.2018; 5: 486–497. doi: 10.1016/S2215-0366(18)30135-4 29728331

6. Brown LA, Fernandez CA, Kohn R, Saldivia S and Vicente B. Pre-disaster PTSD as a moderator of the relationship between natural disaster and suicidal ideation over time. J Affect Disord.2018; 230: 7–14. doi: 10.1016/j.jad.2017.12.096 29355729

7. Michopoulos V, Norrholm SD, Stevens JS, Glover EM, Rothbaum BO and Gillespie CF et al. Dexamethasone facilitates fear extinction and safety discrimination in PTSD: A placebo-controlled, double-blind study. Psychoneuroendocrinology.2017; 83: 65–71. doi: 10.1016/j.psyneuen.2017.05.023 28595089

8. Lai S, Wu G and Jiang Z. Glycyrrhizin Treatment Facilitates Extinction of Conditioned Fear Responses After a Single Prolonged Stress Exposure in Rats. Cellular Physiology and Biochemistry.2018; 45: 2529–2539. doi: 10.1159/000488271 29558743

9. Savic D, Knezevic G, Matic G and Damjanovic S. PTSD and depressive symptoms are linked to DHEAS via personality. Psychoneuroendocrinology.2018; 92: 29–33. doi: 10.1016/j.psyneuen.2018.03.017 29621722

10. Yehuda R. Neuroendocrine and molecular markers and PTSD. Biological Psychiatry.2016; 79: 150S. doi: 10.1016/j.biopsych.2016.03.1054

11. Savic D, Knezevic G, Damjanovic S, Spiric Z and Matic G. The role of personality and traumatic events in cortisol levels—Where does PTSD fit in? PSYCHONEUROENDOCRINOLOGY.2012; 37: 937–947. doi: 10.1016/j.psyneuen.2011.11.001 22133516

12. Stalder T, Steudte-Schmiedgen S, Alexander N, Klucken T, Vater A and Wichmann S et al. Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology.2017; 77: 261–274. doi: 10.1016/j.psyneuen.2016.12.017 28135674

13. Morris MC, Compas BE and Garber J. Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: A systematic review and meta-analysis. Clinical Psychology Review.2012; 32: 301–315. doi: 10.1016/j.cpr.2012.02.002 22459791

14. Klaassens ER, Giltay EJ, Cuijpers P, van Veen T and Zitman FG. Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis. Psychoneuroendocrinology.2012; 37: 317–331. doi: 10.1016/j.psyneuen.2011.07.003 21802212

15. Nijdam MJ, van Amsterdam JG, Gersons BP and Olff M. Dexamethasone-suppressed cortisol awakening response predicts treatment outcome in posttraumatic stress disorder. J Affect Disord.2015; 184: 205–8. doi: 10.1016/j.jad.2015.05.058 26112329

16. Sher L, Oquendo MA, Galfalvy HC, Cooper TB and Mann JJ. Age effects on cortisol levels in depressed patients with and without comorbid post-traumatic stress disorder, and healthy volunteers. J Affect Disord.2004; 82: 53–9. doi: 10.1016/j.jad.2003.09.012 15465576

17. Savic D, Knezevic G, Damjanovic S, Spiric Z and Matic G. The role of personality and traumatic events in cortisol levels—where does PTSD fit in? Psychoneuroendocrinology.2012; 37: 937–47. doi: 10.1016/j.psyneuen.2011.11.001 22133516

18. Wagner K, Couillard-Despres S, Lehner B, Brockhoff G, Rivera FJ and Blume A et al. Prolactin induces MAPK signaling in neural progenitors without alleviating glucocorticoid-induced inhibition of in vitro neurogenesis. Cellular Physiology and Biochemistry.2009; 24: 397–406. doi: 10.1159/000257432 19910680

19. Steudte-Schmiedgen S, Stalder T, Schonfeld S, Wittchen HU, Trautmann S and Alexander N et al. Hair cortisol concentrations and cortisol stress reactivity predict PTSD symptom increase after trauma exposure during military deployment. Psychoneuroendocrinology.2015; 59: 123–33. doi: 10.1016/j.psyneuen.2015.05.007 26072152

20. Klaassens ER, Giltay EJ, Cuijpers P, van Veen T and Zitman FG. Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis. Psychoneuroendocrinology.2012; 37: 317–331. doi: 10.1016/j.psyneuen.2011.07.003 21802212

21. Meewisse M, Reitsma JB, De Vries G, Gersons BPR and Olff M. Cortisol and post-traumatic stress disorder in adults—Systematic review and meta-analysis. BRITISH JOURNAL OF PSYCHIATRY.2007; 191: 387–392. doi: 10.1192/bjp.bp.106.024877 17978317

22. Wahbeh H and Oken BS. Salivary Cortisol Lower in Posttraumatic Stress Disorder. Journal of Traumatic Stress.2013; 26: 241–248. doi: 10.1002/jts.21798 23529862

23. Wingenfeld K, Whooley MA, Neylan TC, Otte C and Cohen BE. Effect of current and lifetime posttraumatic stress disorder on 24-h urinary catecholamines and cortisol: results from the Mind Your Heart Study. Psychoneuroendocrinology.2015; 52: 83–91. doi: 10.1016/j.psyneuen.2014.10.023 25459895

24. Pan X, Wang Z, Wu X, Wen SW and Liu A. Salivary cortisol in post-traumatic stress disorder: a systematic review and meta-analysis. BMC Psychiatry.2018; 18: 324. doi: 10.1186/s12888-018-1910-9 30290789

25. Wingenfeld K, Driessen M, Adam B and Hill A. Overnight urinary cortisol release in women with borderline personality disorder depends on comorbid PTSD and depressive psychopathology. EUROPEAN PSYCHIATRY.2007; 22: 309–312. doi: 10.1016/j.eurpsy.2006.09.002 17142011

26. Otte C, Lenoci M, Metzler T, Yehuda R, Marmar CR and Neylan TC. Hypothalamic-pituitary-adrenal axis activity and sleep in posttraumatic stress disorder. Neuropsychopharmacology.2005; 30: 1173–1180. doi: 10.1038/sj.npp.1300676 15714228

27. Wheler GHT, Brandon D, Clemons A, Riley C, Kendall J and Loriaux DL et al. Cortisol production rate in posttraumatic stress disorder. Journal of Clinical Endocrinology and Metabolism.2006; 91: 3486–3489. doi: 10.1210/jc.2006-0061 16787989

28. Murphy BE. Urinary free cortisol levels in PTSD offspring. Psychoneuroendocrinology.2003; 28: 594–5; author reply 595-6. doi: 10.1016/s0306-4530(02)00041-0 12689615

29. Meewisse M, Reitsma JB, De Vries G, Gersons BPR and Olff M. Cortisol and post-traumatic stress disorder in adults—Systematic review and meta-analysis. BRITISH JOURNAL OF PSYCHIATRY.2007; 191: 387–392. doi: 10.1192/bjp.bp.106.024877 17978317

30. Moher D, Liberati A, Tetzlaff J and Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg.2010; 8: 336–41. doi: 10.1016/j.ijsu.2010.02.007 20171303

31. Samara MT, Goldberg Y, Levine SZ, Furukawa TA, Geddes JR and Cipriani A et al. Initial symptom severity of bipolar I disorder and the efficacy of olanzapine: a meta-analysis of individual participant data from five placebo-controlled studies. Lancet Psychiatry.2017; 4: 859–867. doi: 10.1016/S2215-0366(17)30331-0 28939419

32. Chaumette B, Kebir O, Mam-Lam-Fook C, Morvan Y, Bourgin J and Godsil BP et al. Salivary cortisol in early psychosis: New findings and meta-analysis. Psychoneuroendocrinology.2016; 63: 262–270. doi: 10.1016/j.psyneuen.2015.10.007 26520686

33. Wells G, Shea B and O'Connell J: The Newcastle-Ottawa Scale (NOS) for Assessing The Quality of Nonrandomised Studies in Meta-analyses. _journal.2014; 7

34. Higgins JPT. Measuring inconsistency in meta-analyses. BMJ.2003; 327: 557–560. doi: 10.1136/bmj.327.7414.557 12958120

35. Egger M, Davey SG, Schneider M and Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ.1997; 315: 629–34. doi: 10.1136/bmj.315.7109.629 9310563

36. Bandelow B, Baldwin D, Abelli M, Bolea-Alamanac B, Bourin M and Chamberlain SR et al. Biological markers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition. World Journal of Biological Psychiatry.2017; 18: 162–214. doi: 10.1080/15622975.2016.1190867 27419272

37. Klaassens ER, Giltay EJ, Cuijpers P, van Veen T and Zitman FG. Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis. PSYCHONEUROENDOCRINOLOGY.2012; 37: 317–331. doi: 10.1016/j.psyneuen.2011.07.003 21802212

38. Juster RP, Raymond C, Desrochers AB, Bourdon O, Durand N and Wan N et al. Sex hormones adjust "sex-specific" reactive and diurnal cortisol profiles. Psychoneuroendocrinology.2016; 63: 282–90. doi: 10.1016/j.psyneuen.2015.10.012 26539966

39. Garcia NM, Walker RS and Zoellner LA. Estrogen, progesterone, and the menstrual cycle: A systematic review of fear learning, intrusive memories, and PTSD. Clin Psychol Rev.2018; doi: 10.1016/j.cpr.2018.06.005 29945741

40. Vieira JG, Nakamura OH and Carvalho VM. [Measurement of free urinary cortisol and cortisone using liquid chromatography associated with tandem mass spectrometry method]. Arq Bras Endocrinol Metabol.2005; 49: 291–8. doi:/S0004-27302005000200017 doi: 10.1590/s0004-27302005000200017 16184259

41. Plenis A, Konieczna L, Oledzka I, Kowalski P and Baczek T. Simultaneous determination of urinary cortisol, cortisone and corticosterone in parachutists, depressed patients and healthy controls in view of biomedical and pharmacokinetic studies. Mol Biosyst.2011; 7: 1487–500. doi: 10.1039/c0mb00313a 21336389

42. Southwick SM, Axelrod SR, Wang S, Yehuda R, Morgan CR and Charney D et al. Twenty-four-hour urine cortisol in combat veterans with PTSD and comorbid borderline personality disorder. J Nerv Ment Dis.2003; 191: 261–2. doi: 10.1097/01.NMD.0000061140.93952.28 12695738

43. Pietrzak RH, Naganawa M, Huang Y, Corsi-Travali S, Zheng MQ and Stein MB et al. Association of in vivo κ-opioid receptor availability and the transdiagnostic dimensional expression of trauma-related psychopathology. JAMA Psychiatry.2014; 71: 1262–1270. doi: 10.1001/jamapsychiatry.2014.1221 25229257

44. Morris MC, Hellman N, Abelson JL and Rao U. Cortisol, heart rate, and blood pressure as early markers of PTSD risk: A systematic review and meta-analysis. Clinical Psychology Review.2016; 49: 79–91. doi: 10.1016/j.cpr.2016.09.001 27623149

45. Pan X, Kaminga AC, Wen SW and Liu A. Catecholamines in Post-traumatic Stress Disorder: A Systematic Review and Meta-Analysis. Frontiers in Molecular Neuroscience.2018; 1110.3389/fnmol.2018.00450

46. Bader HN, Bierer LM, Lehrner A, Makotkine I, Daskalakis NP and Yehuda R. Maternal age at Holocaust exposure and maternal PTSD independently influence urinary cortisol levels in adult offspring. Frontiers in Endocrinology.2014; 510.3389/fendo.2014.00103

47. Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW and Hill KK et al. Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. American Journal of Psychiatry.1999; 156: 585–588. doi: 10.1176/ajp.156.4.585 10200738

48. Bierer LM, Tischler L, Labinsky E, Cahill S, Foa E and Yehuda R. Clinical correlates of 24-h cortisol and norepinephrine excretion among subjects seeking treatment following the World Trade Center attacks on 9/11. Annals of the New York Academy of Sciences.2006; 1071: 514–520. doi: 10.1196/annals.1364.055 16891610

49. De Bellis MD, Baum AS, Birmaher B, Keshavan MS, Eccard CH and Boring AM et al. Developmental traumatology Part I: Biological stress systems. BIOLOGICAL PSYCHIATRY.1999; 45: 1259–1270. doi: 10.1016/s0006-3223(99)00044-x

50. Delahanty DL, Raimonde AJ and Spoonster E. Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims. Biological Psychiatry.2000; 48: 940–947. doi: 10.1016/s0006-3223(00)00896-9 11074232

51. Lemieux AM and Coe CL. Abuse-related posttraumatic stress disorder: evidence for chronic neuroendocrine activation in women. Psychosomatic medicine.1995; 57: 105–15. doi: 10.1097/00006842-199503000-00002 7792368

52. Lemieux A, Coe CL and Carnes M. Symptom severity predicts degree of T cell activation in adult women following childhood maltreatment. BRAIN BEHAVIOR AND IMMUNITY.2008; 22: 994–1003. doi: 10.1016/j.bbi.2008.02.005 18396007

53. McFarlane AC, Barton CA, Yehuda R and Wittert G. Cortisol response to acute trauma and risk of posttraumatic stress disorder. Psychoneuroendocrinology.2011; 36: 720–727. doi: 10.1016/j.psyneuen.2010.10.007 21093988

54. Masoudzadeh A, Modanlookordi M, Ajami A and Azizi A. Evaluation of cortisol level and cell-mediated immunity response changes in individuals with post-traumatic stress disorder as a consequence of war. European Psychiatry.2013; 28

55. Pitman RK and Orr SP. Twenty-four hour urinary cortisol and catecholamine excretion in combat-related posttraumatic stress disorder. Biological Psychiatry.1990; 27: 245–247. doi: 10.1016/0006-3223(90)90654-k 2294983

56. Rasmusson AM, Lipschitz DS, Wang S, Hu S, Vojvoda D and Bremner JD et al. Increased pituitary and adrenal reactivity in premenopausal women with posttraumatic stress disorder. Biological Psychiatry.2001; 50: 965–977. doi: 10.1016/s0006-3223(01)01264-1 11750893

57. Simeon D, Knutelska M, Yehuda R, Putnam F, Schmeidler J and Smith LM. Hypothalamic-Pituitary-Adrenal Axis Function in Dissociative Disorders, Post-Traumatic Stress Disorder, and Healthy Volunteers. Biological Psychiatry.2007; 61: 966–973. doi: 10.1016/j.biopsych.2006.07.030 17137559

58. Wingenfeid K, Whooley MA, Neylan TC, Otte C and Cohen BE. Effect of current and lifetime posttraumatic stress disorder on 24-h urinary catecholamines and cortisol: Results from the Mind Your Heart Study. PSYCHONEUROENDOCRINOLOGY.2015; 52: 83–91. doi: 10.1016/j.psyneuen.2014.10.023 25459895

59. Yehuda R and Bierer LM. Transgenerational transmission of cortisol and PTSD risk. Prog Brain Res.2008; 167: 121–35. doi: 10.1016/S0079-6123(07)67009-5 18037011

60. Yehuda R, Bierer LM, Schmeidler J, Aferiat DH, Breslau I and Dolan S. Low cortisol and risk for PTSD in adult offspring of Holocaust survivors. American Journal of Psychiatry.2000; 157: 1252–1259. doi: 10.1176/appi.ajp.157.8.1252 10910787

61. Yehuda R, Halligan SL and Grossman R. Childhood trauma and risk for PTSD: relationship to intergenerational effects of trauma, parental PTSD, and cortisol excretion. Development and psychopathology.2001; 13: 733–753. doi: 10.1017/s0954579401003170 11523857

62. Yehuda R, Morris A, Labinsky E, Zemelman S and Schmeidler J. Ten-year follow-up study of cortisol levels in aging Holocaust survivors with and without PTSD. Journal of Traumatic Stress.2007; 20: 757–761. doi: 10.1002/jts.20228 17955524

63. Yehuda R, Bierer LM, Sarapas C, Makotkine I, Andrew R and Seckl JR. Cortisol metabolic predictors of response to psychotherapy for symptoms of PTSD in survivors of the World Trade Center attacks on September 11, 2001. PSYCHONEUROENDOCRINOLOGY.2009; 34: 1304–1313. doi: 10.1016/j.psyneuen.2009.03.018 19411143

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden