Role of ecology in shaping external nasal morphology in bats and implications for olfactory tracking


Autoři: Alyson F. Brokaw aff001;  Michael Smotherman aff001
Působiště autorů: Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America aff001;  Department of Biology, Texas A&M University, College Station, Texas, United States of America aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226689

Souhrn

Many animals display morphological adaptations of the nose that improve their ability to detect and track odors. Bilateral odor sampling improves an animals’ ability to navigate using olfaction and increased separation of the nostrils facilitates olfactory source localization. Many bats use odors to find food and mates and bats display an elaborate diversity of facial features. Prior studies have quantified how variations in facial features correlate with echolocation and feeding ecology, but surprisingly none have asked whether bat noses might be adapted for olfactory tracking in flight. We predicted that bat species that rely upon odor cues while foraging would have greater nostril separation in support of olfactory tropotaxis. Using museum specimens, we measured the external nose and cranial morphology of 40 New World bat species. Diet had a significant effect on external nose morphology, but contrary to our predictions, insectivorous bats had the largest relative separation of nostrils, while nectar feeding species had the narrowest nostril widths. Furthermore, nasal echolocating bats had significantly narrower nostrils than oral emitting bats, reflecting a potential trade-off between sonar pulse emission and stereo-olfaction in those species. To our knowledge, this is the first study to evaluate the evolutionary interactions between olfaction and echolocation in shaping the external morphology of a facial feature using modern phylogenetic comparative methods. Future work pairing olfactory morphology with tracking behavior will provide more insight into how animals such as bats integrate olfactory information while foraging.

Klíčová slova:

Animal phylogenetics – Bats – Echolocation – Foraging – Fruit bats – Nose – Phylogenetics – Principal component analysis


Zdroje

1. Svensson GP, Strandh M, Löfstedt C. Movements in the olfactory landscape. In: Hansson L-A, Akesson S, editors. Animal Movement Across Scales. Oxford University Press; 2014. pp. 45–66. doi: 10.1093/acprof

2. Dusenbery DB. Sensory Ecology: How organisms acquire and respond to information. New York: W.H. Freeman; 1992.

3. Takasaki T, Namiki S, Kanzaki R. Use of bilateral information to determine the walking direction during orientation to a pheromone source in the silkmoth, Bombyx mori. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol. 2012;198: 295–307. doi: 10.1007/s00359-011-0708-8 22227850

4. Gardiner JM, Atema J. The function of bilateral odor arrival time differences in olfactory orientation of sharks. Curr Biol. 2010;20: 1187–1191. doi: 10.1016/j.cub.2010.04.053 20541411

5. Steck K, Knaden M, Hansson BS. Do desert ants smell the scenery in stereo? Anim Behav. 2010;79: 939–945. doi: 10.1016/j.anbehav.2010.01.011

6. Duistermars BJ, Chow DM, Frye MA. Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight. Curr Biol. 2009;19: 1301–1307. doi: 10.1016/j.cub.2009.06.022 19576769

7. Basil JA, Hanlon RT, Sheikh SI, Atema J. Three-dimensional odor tracking by Nautilus pompilius. J Exp Biol. 2000;203: 1409–1414. doi: 10.1016/j.biortech.2018.03.102 10751156

8. Wyeth RC. Olfactory navigation in aquatic gastropods. J Exp Biol. 2019;222: jeb185843. doi: 10.1242/jeb.185843 30728227

9. Kraus-Epley KE, Moore PA. Bilateral and unilateral antennal lesions alter orientation abilities of the crayfish, Orconectes rusticus. Chem Senses. 2002;27: 49–55. doi: 10.1093/chemse/27.1.49 11751468

10. Catania KC. Stereo and serial sniffing guide navigation to an odour source in a mammal. Nat Commun. 2013;4: 1441. doi: 10.1038/ncomms2444 23385586

11. Rajan R, Clement JP, Bhalla US. Rats smell in stereo. Science (80-). 2006;311: 666–670. doi: 10.1126/science.1122096 16456082

12. Khan AG, Sarangi M, Bhalla US. Rats track odour trails accurately using a multi-layered strategy with near-optimal sampling. Nat Commun. 2012;3: 703. doi: 10.1038/ncomms1712 22426224

13. Porter J, Craven B, Khan RM, Chang S-J, Kang I, Judkewitz B, et al. Mechanisms of scent-tracking in humans. Nat Neurosci. 2007;10: 27–29. doi: 10.1038/nn1819 17173046

14. Bird DJ, Murphy WJ, Fox-Rosales L, Hamid I, Eagle RA, Van Valkenburgh B. Olfaction written in bone: Cribriform plate size parallels olfactory receptor gene repertoires in Mammalia. Proc R Soc B Biol Sci. 2018;285: 20180100. doi: 10.1098/rspb.2018.0100 29540522

15. Schellinck HM, Forestell CA, LoLordo VM. A Simple and Reliable Test of Olfactory Learning and Memory in Mice. Chem Senses. 2001;26: 663–672. doi: 10.1093/chemse/26.6.663 11473932

16. Can Güven S, Laska M. Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice. PLoS One. 2012;7: e34301. doi: 10.1371/journal.pone.0034301 22479594

17. Rushmore J, Leonhardt SD, Drea CM. Sight or scent: Lemur sensory reliance in detecting food quality varies with feeding ecology. Osorio D, editor. PLoS One. 2012;7: e41558. doi: 10.1371/journal.pone.0041558 22870229

18. Hübener F, Laska M. A two-choice discrimination method to assess olfactory performance in pigtailed macaques, Macaca nemestrina. Physiol Behav. 2001;72: 511–519. doi: 10.1016/s0031-9384(00)00447-9 11282134

19. Eliasson M, Hernandez Salazar LT, Laska M. Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds. Neurosci Res. 2015;99: 46–54. doi: 10.1016/j.neures.2015.05.008 26055441

20. Rieger JF, Jakob EM. The use of olfaction in food location by frugivorous bats. Biotropica. 1988;20: 161–164. doi: 10.2307/2388189

21. Von Helversen O, Winkler L, Bestmann HJ. Sulphur-containing “perfumes” attract flower-visiting bats. J Comp Physiol—A Sensory, Neural, Behav Physiol. 2000;186: 143–153. doi: 10.1007/s003590050014 10707312

22. Korine C, Kalko EKV. Fruit detection and discrimination by small fruit-eating bats (Phyllostomidae): Echolocation call design and olfaction. Behav Ecol Sociobiol. 2005;59: 12–23. doi: 10.1007/s00265-005-0003-1

23. Sánchez F, Korine C, Steeghs M, Laarhoven LJ, Cristescu SM, Harren FJM, et al. Ethanol and methanol as possible odor cues for Egyptian fruit bats (Rousettus aegyptiacus). J Chem Ecol. 2006;32: 1289–1300. doi: 10.1007/s10886-006-9085-0 16770719

24. Gonzalez-Terrazas TP, Koblitz JC, Fleming TH, Medellín RA, Kalko EKV, Schnitzler HU, et al. How nectar-feeding bats localize their food: Echolocation behavior of Leptonycteris yerbabuenae approaching cactus flowers. PLoS One. 2016;11: 1–18. doi: 10.1371/journal.pone.0163492 27684373

25. Laska M. Olfactory Discrimination Ability in Short-Bat, Tailed Fruit Bat, Carollia perspicillata (Chiroptera: Phyllostomidae). J Chem Ecol. 1990;16: 3291–3299. doi: 10.1007/BF00982099 24263430

26. Laska M. Olfactory sensitivity to food odor components in the short-tailed fruit bat, Carollia perspicillata (Phyllostomatidae, Chiroptera). J Comp Physiol A. 1990;166: 395–399. doi: 10.1007/BF00204812

27. Bhatnagar KP, Kallen FC. Cribiform plate of ethmoid, olfactory bulb and olfactory acuity in forty species of bats. J Morphol. 1974;142: 71–90. doi: 10.1002/jmor.1051420104 4809024

28. Hutcheon JM, Kirsch JAW, Garland T. A comparative analysis of brain size in relation to foraging ecology and phylogeny in the Chiroptera. Brain Behav Evol. 2002;60: 165–180. doi: 10.1159/000065938 12417821

29. Muchhala N, Serrano D. The complexity of background clutter affects nectar bat use of flower odor and shape cues. PLoS One. 2015;10: e0136657. doi: 10.1371/journal.pone.0136657 26445216

30. Pedersen SC, Müller R. Nasal-emission and nose leaves. Bat Evolution, Ecology, and Conservation. New York, NY: Springer New York; 2013. pp. 71–91. doi: 10.1007/978-1-4614-7397-8_4

31. Stoddart DM. External nares and olfactory perceptions. Experimentia. 1979;35: 1456–1457.

32. Kajiura SM, Forni JB, Summers AP. Olfactory morphology of carcharhinid and sphyrnid sharks: Does the cephalofoil confer a sensory advantage? J Morphol. 2005;264: 253–263. doi: 10.1002/jmor.10208 15549717

33. Vervust B, Van Dongen S, Van Damme R. The effect of preservation on lizard morphometrics—An experimental study. Amphib Reptil. 2009;30: 321–329. doi: 10.1163/156853809788795209

34. Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Michener WK, editor. Ecology. 2009;90: 2648–2648. doi: 10.1890/08-1494.1

35. Reid F. A Field Guide to the Mammals of Central America and Southeast Mexico. New York, NY: Oxford University Press; 2009.

36. Wilson DE, LaVal RK. Myotis nigricans. Mamm Species. 1974; 1. doi: 10.2307/3503847

37. Solari S, Pacheco V, Vivar E. New distribution records of Peruvian bats. Rev Peru Biol. 1999;6: 152–159.

38. Liu A, Papale A, Hengenius J, Patel K, Ermentrout B, Urban N. Mouse navigation strategies for odor source localization. bioRxiv. 2019; 558643. doi: 10.1101/558643

39. Denzinger A, Schnitzler HU. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front Physiol. 2013;4: 1–15. doi: 10.3389/fphys.2013.00001

40. Murlis J, Willis MA, Cardé RT. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol Entomol. 2000;25: 211–222. doi: 10.1046/j.1365-3032.2000.00176.x

41. Hartley DJ, Suthers RA. The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat, Carollia perspicillata. J Acoust Soc Am. 1987;82: 1892–1900. doi: 10.1121/1.395684 3429728

42. Felsenstein J. Phylogenies and the Comparative Method. The American Naturalist. 1985. pp. 1–15. doi: 10.4324/9781315736198

43. Shi JJ, Rabosky DL. Speciation dynamics during the global radiation of extant bats. Evolution. 2015;69: 1528–1545. doi: 10.1111/evo.12681 25958922

44. Paradis E, Schliep K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35: 526–528. doi: 10.1093/bioinformatics/bty633 30016406

45. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, et al. caper: Comparative Analyses of Phylogenetic and Evolution in R. 2018.

46. Harmon AL, Weir JT, Brock CD, Challenger W, Hunt G, Fitzjohn R, et al. GEIGER: investigating evolutionary radiations. Bioinformatics. 2008;24: 129–131. doi: 10.1093/bioinformatics/btm538 18006550

47. Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3: 217–223. doi: 10.1111/j.2041-210X.2011.00169.x

48. Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401: 877–884. doi: 10.1038/44766 10553904

49. Blomberg SP, Garland T, Ives AR. Testing for Phylogenetic Signal in Comparative Data: Behavioral traits are more labile. Evolution. 2003;57: 717–745. doi: 10.1111/j.0014-3820.2003.tb00285.x 12778543

50. Freckleton RP. The seven deadly sins of comparative analysis. Journal of Evolutionary Biology. 2009. pp. 1367–1375. doi: 10.1111/j.1420-9101.2009.01757.x 19508410

51. Burnham KP, Anderson DR. Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods and Research. 2004. pp. 261–304. doi: 10.1177/0049124104268644

52. Freeman PW. Macroevolution in Microchiroptera: Recoupling morphology and ecology with phylogeny. Evol Ecol Res. 2000;2: 317–335.

53. Nogueira MR, Peracchi AL, Monteiro LR. Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Funct Ecol. 2009;23: 715–723. doi: 10.1111/j.1365-2435.2009.01549.x

54. Dumont ER, Dávalos LM, Goldberg A, Santana SE, Rex K, Voigt CC. Morphological innovation, diversification and invasion of a new adaptive zone. Proc R Soc B Biol Sci. 2012;279: 1797–1805. doi: 10.1098/rspb.2011.2005 22113035

55. Thies W, Kalko EKV, Schnitzler HU. The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on Piper. Behav Ecol Sociobiol. 1998;42: 397–409. doi: 10.1007/s002650050454

56. Mikich SB, Bianconi GV, Maia BHLNS, Teixeira SD. Attraction of the fruit-eating bat Carollia perspicillata to Piper gaudichaudianum essential oil. J Chem Ecol. 2003;29: 2379–2383. doi: 10.1023/a:1026290022642 14682519

57. Bianconi G V, Mikich SB, Teixeira SD, Maia BHLNS. Attraction of fruit-eating bats with essential oils of fruits: A potential tool for forest restoration. Biotropica. 2007;39: 136–140. doi: 10.1111/j.1744-7429.2006.00236.x

58. Parolin LC, Hansel FA, Bianconi GV, Mikich SB. Chemical compounds in Neotropical fruit bat-plant interactions. Mammalian Biology. 30 Jun 2018. doi: 10.1016/j.mambio.2018.04.002

59. Carter GG, Ratcliffe JM, Galef BG. Flower bats (Glossophaga soricina) and fruit bats (Carollia perspicillata) rely on spatial cues over shapes and scents when relocating food. PLoS One. 2010;5: 1–6. doi: 10.1371/journal.pone.0010808 20520841

60. Norberg UM, Rayner JMV. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc B, Biol Sci. 1987;316: 335–427.

61. Marinello MM, Bernard E. Wing morphology of Neotropical bats: a quantitative and qualitative analysis with implications for habitat use. Can J Zool. 2014;92: 141–147. doi: 10.1139/cjz-2013-0127

62. Elkinton JS, Cardé RT. Odor Dispersion. Chemical Ecology of Insects. Boston, MA: Springer US; 1984. pp. 73–91. doi: 10.1007/978-1-4899-3368-3_3

63. Santana SE, Dumont ER, Davis JL. Mechanics of bite force production and its relationship to diet in bats. Funct Ecol. 2010;24: 776–784. doi: 10.1111/j.1365-2435.2010.01703.x

64. Dumont ER, Samadevam K, Grosse I, Warsi OM, Baird B, Davalos LM. Selection for mechanical advantage underlies multiple cranial optima in new world leaf-nosed bats. Evolution. 2014;68: 1436–1449. doi: 10.1111/evo.12358 24433457

65. Pye JD. Noseleaves and Bat Pulses. Animal Sonar. Boston, MA: Springer US; 1988. pp. 791–796. doi: 10.1007/978-1-4684-7493-0_83

66. Luft S, Curio E, Tacud B. The use of olfaction in the foraging behaviour of the golden-mantled flying fox, Pteropus pumilus, and the greater musky fruit bat, Ptenochirus jagori (Megachiroptera: Pteropodidae). Naturwissenschaften. 2003;90: 84–87. doi: 10.1007/s00114-002-0393-0 12590304

67. Hodgkison R, Ayasse M, Kalko EK V, Häberlein C, Schulz S, Mustapha WAW, et al. Chemical ecology of fruit bat foraging behavior in relation to the fruit odors of two species of paleotropical bat-dispersed figs (Ficus hispida and Ficus scortechinii). J Chem Ecol. 2007;33: 2097–2110. doi: 10.1007/s10886-007-9367-1 17929094

68. Raghuram H, Thangadurai C, Gopukumar N, Nathar K, Sripathi K. The role of olfaction and vision in the foraging behaviour of an echolocating megachiropteran fruit bat, Rousettus leschenaulti (Pteropodidae). Mamm Biol. 2009;74: 9–14. doi: 10.1016/j.mambio.2008.02.008

69. Clifford AB, Witmer LM. Case studies in novel narial anatomy: 2. The enigmatic nose of moose (Artiodactyla: Cervidae:Alces alces). J Zool. 2004;262: 339–360. doi: 10.1017/S0952836903004692

70. Craven BA, Neuberger T, Paterson EG, Webb AG, Josephson EM, Morrison EE, et al. Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow. Anat Rec. 2007;290: 1325–1340. doi: 10.1002/ar.20592 17929289

71. Ranslow AN, Richter JP, Neuberger T, Van Valkenburgh B, Rumple CR, Quigley AP, et al. Reconstruction and Morphometric Analysis of the Nasal Airway of the White-Tailed Deer (Odocoileus virginianus) and Implications Regarding Respiratory and Olfactory Airflow. Anat Rec. 2014;297: 2138–2147. doi: 10.1002/ar.23037 25312370

72. Jenkins EK, DeChant MT, Perry EB. When the Nose Doesn’t Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota. Front Vet Sci. 2018;5: 56. doi: 10.3389/fvets.2018.00056 29651421

73. Eiting TP, Perot JB, Dumont ER. How much does nasal cavity morphology matter? Patterns and rates of olfactory airflow in phyllostomid bats. Proc R Soc B Biol Sci. 2014;282: 20142161. doi: 10.1098/rspb.2014.2161 25520358

74. Fabre A-C, Cornette R, Huyghe K, Andrade D V., Herrel A. Linear versus geometric morphometric approaches for the analysis of head shape dimorphism in lizards. J Morphol. 2014;275: 1016–1026. doi: 10.1002/jmor.20278 24740578

75. Yohe LR, Hoffmann S, Curtis A. Vomeronasal and Olfactory Structures in Bats Revealed by DiceCT Clarify Genetic Evidence of Function. Front Neuroanat. 2018;12: 32. doi: 10.3389/fnana.2018.00032 29867373

76. Witmer L, Porter WR, Cerio D, Nassif J, Caggiano EG, Griffin C, et al. 3D visualization of vertebrate soft tissues using spiceCT (Selectively Perfusable Iodine-based Contrast-Enhanced CT) as a rapid alternative to diceCT. FASEB J. 2018; doi: 10.1096/fasebj.2018.32.1_supplement.642.4

77. Negus VE. Observations on the Comparative Anatomy and Physiology of Olfaction. Acta Otolaryngol. 1954;44: 13–24. doi: 10.3109/00016485409126874 13147791

78. Keeley ATH, Keeley BW. The Mating System of Tadarida brasiliensis (Chiroptera: Molossidae) in a Large Highway Bridge Colony. J Mammal. 2004;85: 113–119. doi: 10.1644/BME-004

79. Scully WM, Fenton MB, Saleuddin AS. A histological examination of the holding sacs and glandular scent organs of some bat species (Emballonuridae, Hipposideridae, Phyllostomidae, Vespertilionidae, and Molossidae). Can J Zool. 2000;78: 613–623. doi: 10.1139/z99-248

80. Safi K, Gagliardo A, Wikelski M, Kranstauber B. How Displaced Migratory Birds Could Use Volatile Atmospheric Compounds to Find Their Migratory Corridor: A Test Using a Particle Dispersion Model. Front Behav Neurosci. 2016;10: 175. doi: 10.3389/fnbeh.2016.00175 27799899

81. Abolaffio M, Reynolds AM, Cecere JG, Paiva VH, Focardi S. Olfactory-cued navigation in shearwaters: linking movement patterns to mechanisms. Sci Rep. 2018;8: 11590. doi: 10.1038/s41598-018-29919-0 30072695

82. Reynolds AM, Cecere JG, Paiva VH, Ramos JA, Focardi S. Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation. Proc R Soc B Biol Sci. 2015;282: 1–7. doi: 10.1098/rspb.2015.0468 26136443

83. Roberts LH. Correlation of respiration and ultrasound production in rodents and bats. J Zool. 1972;168: 439–449. doi: 10.1111/j.1469-7998.1972.tb01360.x

84. Suthers RA, Thomas SP, Suthers BJ. Respiration, Wing-Beat and Ultrasonic Pulse Emission in an Echo-Locating Bat. J Exp Biol. 1972;56: 37–48.

85. Falk B, Kasnadi J, Moss CF. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats. J Exp Biol. 2015;218: 3678–3688. doi: 10.1242/jeb.122283 26582935

86. Wesson DW, Donahou TN, Johnson MO, Wachowiak M. Sniffing behavior of mice during performance in odor-guided tasks. Chem Senses. 2008;33: 581–596. doi: 10.1093/chemse/bjn029 18534995

87. Craven BA, Paterson EG, Settles GS. The fluid dynamics of canine olfaction: Unique nasal airflow patterns as an explanation of macrosmia. J R Soc Interface. 2010;7: 933–943. doi: 10.1098/rsif.2009.0490 20007171

88. Staymates ME, MacCrehan WA, Staymates JL, Kunz RR, Mendum T, Ong TH, et al. Biomimetic Sniffing Improves the Detection Performance of a 3D Printed Nose of a Dog and a Commercial Trace Vapor Detector. Sci Rep. 2016;6: 36876. doi: 10.1038/srep36876 27906156

89. Crimaldi JP, Koseff JR. High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume. Exp Fluids. 2001;31: 90–102. doi: 10.1007/s003480000263


Článek vyšel v časopise

PLOS One


2020 Číslo 1