SRL pathogenicity island contributes to the metabolism of D-aspartate via an aspartate racemase in Shigella flexneri YSH6000


Autoři: Tania Henríquez aff001;  Juan Carlos Salazar aff001;  Massimiliano Marvasi aff003;  Ajit Shah aff004;  Gino Corsini aff005;  Cecilia S. Toro aff001
Působiště autorů: Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile aff001;  Biozentrum, Ludwig-Maximilians-Universität München, Martinsried, Germany aff002;  Università degli Studi di Firenze, Firenze, Italy aff003;  Middlesex University London, The Burroughs, London, United Kingdom aff004;  Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0228178

Souhrn

In recent years, multidrug resistance of Shigella strains associated with genetic elements like pathogenicity islands, have become a public health problem. The Shigella resistance locus pathogenicity island (SRL PAI) of S. flexneri 2a harbors a 16Kbp region that contributes to the multidrug resistance phenotype. However, there is not much information about other functions such as metabolic, physiologic or ecological ones. For that, wild type S. flexneri YSH6000 strain, and its spontaneous SRL PAI mutant, 1363, were used to study the contribution of the island in different growth conditions. Interestingly, when both strains were compared by the Phenotype Microarrays, the ability to metabolize D-aspartic acid as a carbon source was detected in the wild type strain but not in the mutant. When D-aspartate was added to minimal medium with other carbon sources such as mannose or mannitol, the SRL PAI-positive strain was able to metabolize it, while the SRL PAI-negative strain did not. In order to identify the genetic elements responsible for this phenotype, a bioinformatic analysis was performed and two genes belonging to SRL PAI were found: orf8, coding for a putative aspartate racemase, and orf9, coding for a transporter. Thus, it was possible to measure, by an indirect analysis of racemization activity in minimal medium supplemented only with D-aspartate, that YSH6000 strain was able to transform the D-form into L-, while the mutant was impaired to do it. When the orf8-orf9 region from SRL island was transformed into S. flexneri and S. sonnei SRL PAI-negative strains, the phenotype was restored. Although, when single genes were cloned into plasmids, no complementation was observed. Our results strongly suggest that the aspartate racemase and the transporter encoded in the SRL pathogenicity island are important for bacterial survival in environments rich in D-aspartate.

Klíčová slova:

Islands – Mannitol – Mannose – Microarrays – Pathogenesis – Protein metabolism – Shigella – Shigella flexneri


Zdroje

1. Niyogi S. Shigellosis. J Microbiol. 2005;43(2):133–143. 15880088

2. Kotloff K, Nataro J, Blackwelder W, Nasrin D, Farag T, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382(9888):209–222. doi: 10.1016/S0140-6736(13)60844-2 23680352

3. Kotloff K, Winickoff J, Ivanoff B, Clemens J, Swerdlow D, Sansonetti P, et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ. 1999;77(8):651–666. 10516787

4. Ashkenazi S, Levy I, Kazaronovski V, Samra Z. Growing antimicrobial resistance of Shigella isolates. J Antimicrob Chemother. 2003;51(2):427–429. doi: 10.1093/jac/dkg080 12562716

5. Gupta S, Mishra B, Muralidharan S, Srinivasa H. Ceftriaxone resistant Shigella flexneri, an emerging problem. Indian J Med Sci. 2010;64(12):553–556. 21258157

6. Luck S, Turner S, Rajakumar K, Sakellaris H, Adler B. Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes. Infect Immun. 2001;69(10):6012–6021. doi: 10.1128/IAI.69.10.6012-6021.2001 11553538

7. Turner S, Luck S, Sakellaris H, Rajakumar K, Adler B. Nested deletions of the SRL pathogenicity island of Shigella flexneri 2a. J Bacteriol. 2001;183(19):5535–5543. doi: 10.1128/JB.183.19.5535-5543.2001 11544215

8. Turner S, Luck S, Sakellaris H, Rajakumar K, Adler B. Molecular epidemiology of the SRL pathogenicity island. Antimicrob Agents Chemother. 2003;47(2):727–734. doi: 10.1128/AAC.47.2.727-734.2003 12543684

9. Uyanik MH, Yazgi H, Ayyildiz A. Survival of Salmonella typhi and Shigella flexneri in different water samples and at different temperatures. Turk J Med Sci. 2008;38(4):307–310.

10. Davis H, Taylor J, Perdue J, Stelma GJ, Humphreys JJ, Rowntree Rr, et al. A shigellosis outbreak traced to commercially distributed shredded lettuce. Am J Epidemiol. 1988;128(6):1312–1321. doi: 10.1093/oxfordjournals.aje.a115084 3057879

11. Gorden J, Small P. Acid resistance in enteric bacteria. Infect Immun. 1993;61(1):364–367. 8418063

12. Zychlinsky A, Prevost M, Sansonetti P. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167–169. doi: 10.1038/358167a0 1614548

13. Poteete A, Rosadini C, St Pierre C. Gentamicin and other cassettes for chromosomal gene replacement in Escherichia coli. Biotechniques. 2006;41(3):261–264. doi: 10.2144/000112242 16989085

14. Bochner B, Gadzinski P, Panomitros E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res. 2001;11(7):1246–1255. doi: 10.1101/gr.186501 11435407

15. Gabridge M, Polisky R. Quantitative reduction of 2,3,4-triphenyl tetrazolium chloride by hamster trachea organ cultures: effects of Mycoplasma pneumoniae cells and membranes. Infect Immun. 1976;13(1):84–91. 1248878

16. Zhang G, Sun H. Racemization in reverse: evidence that D-amino acid toxicity on Earth is controlled by bacteria with racemases. PLoS One. 2014;9(3):e92101. doi: 10.1371/journal.pone.0092101 24647559

17. Lam H, Oh D-C, Cava F, Takacs CN, Clardy J, de Pedro MA, et al. D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science. 2009;325(5947):1552–1555. doi: 10.1126/science.1178123 19762646

18. Aliashkevich A, Alvarez L, Cava F. New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems. Front Microbiol. 2018;9(683).

19. Eisenstadt J, Grossman L, Klein H. Inhibition of protein synthesis by D-aspartate and a possible site of its action. Biochim Biophys Acta. 1959;36:292–294. doi: 10.1016/0006-3002(59)90113-1 13819772

20. Eisenstadt J, Klein H. Effects of aspartate on growth and on the synthesis of alpha-amylase in Pseudomonas saccharophila. J Bacteriol. 1964;87:1355–1363. 14188713

21. Warnes S, Highmore C, Keevil C. Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health. MBio. 2012;3(6). doi: 10.1128/mBio.00489-12 23188508

22. Janausch I, Kim O, Unden G. DctA- and Dcu-independent transport of succinate in Escherichia coli: contribution of diffusion and of alternative carriers. Arch Microbiol. 2001;176(3):224–230. doi: 10.1007/s002030100317 11511871

23. Rosa N, Neish AC. Formation and occurrence of N-malonylphenylalanine and related compounds in plants. Can J Biochem. 1968;46(8):799–806. 5672861

24. Hatanaka T, Huang W, Nakanishi T, Bridges CC, Smith SB, Prasad PD, et al. Transport of D-serine via the amino acid transporter ATB(0,+) expressed in the colon. Biochem Biophys Res Commun. 2002;291(2):291–295. doi: 10.1006/bbrc.2002.6441 11846403

25. Hernández SB, Cava F. Environmental roles of microbial amino acid racemases. Environ Microbiol. 2016;18(6):1673–1685. doi: 10.1111/1462-2920.13072 26419727

26. Matsumoto M, Kunisawa A, Hattori T, Kawana S, Kitada Y, Tamada H, et al. Free D-amino acids produced by commensal bacteria in the colonic lumen. Sci Rep. 2018;8(1):17915. doi: 10.1038/s41598-018-36244-z 30559391

27. Ray S, Das S, Panda PK, Suar M. Identification of a new alanine racemase in Salmonella Enteritidis and its contribution to pathogenesis. Gut Pathog. 2018;10:30. doi: 10.1186/s13099-018-0257-6 30008809

28. Markovetz A, Cook W, Larson A. Bacterial metabolism of D-aspartate involving racemization and decarboxylation. Can J Microbiol. 1966;12(4):745–751. doi: 10.1139/m66-101 5969337

29. Grula M, Smith R, Parham C, Grula E. Cell division in a species of Erwinia. XI. Some aspects of the carbon and nitrogen nutrition of Erwinia species. Can J Microbiol. 1968;14(11):1217–1224. doi: 10.1139/m68-204 5724891

30. Juhas M, van der Meer J, Gaillard M, Harding R, Hood D, Crook D. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev. 2009;33(2):376–393. doi: 10.1111/j.1574-6976.2008.00136.x 19178566


Článek vyšel v časopise

PLOS One


2020 Číslo 1