Faecal analyses and alimentary tracers reveal the foraging ecology of two sympatric bats

Autoři: Sydney Moyo aff001;  David S. Jacobs aff001
Působiště autorů: Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227743


We used three complementary methods to assess the diet of two insectivorous bat species: one an obligate aerial hunter, Miniopterus natalensis, and the other Myotis tricolor whose morphology and taxonomic affiliation to other trawling bats suggests it may be a trawler (capturing insects from the water surface with its feet and tail). We used visual inspection, stable isotope values and fatty acid profiles of insect fragments in bat faeces sampled across five sites to determine the contribution of aquatic and terrestrial arthropods to the diets of the two species. The niche widths of M. tricolor were generally wider than those of Miniopterus natalensis but with much overlap, both taking aquatic and terrestrial insects, albeit in different proportions. The diet of M. tricolor had high proportions of fatty acids (20:5ω3 and 22:6ω3) that are only obtainable from aquatic insects. Furthermore, the diet of M. tricolor had higher proportions of water striders (Gerridae) and whirligig beetles (Gyrinidae), insects obtainable via trawling, than Miniopterus natalensis. These results suggest both species are flexible in their consumption of prey but that M. tricolor may use both aerial hawking and trawling, or at least gleaning, to take insects from water surfaces. The resultant spatial segregation may sufficiently differentiate the niches of the two species, allowing them to co-exist. Furthermore, our results emphasize that using a combination of methods to analyse diets of cryptic animals yields greater insights into animal foraging ecology than any of them on their own.

Klíčová slova:

Bats – Diet – Ecological niches – Fatty acids – Foraging – Predation – Trophic interactions – Aquatic insects


1. Fenton MB. Science and the Conservation of Bats: Where to Next? Wildl Soc Bull. 2003;31: 6–15. doi: 10.2307/3784355

2. Lacki MJ, Sybill AK, Baker MD. Foraging ecology of bats in forests. In: Lacki MJ, Hayes JP, Kurta A, editors. Bats in Forests: Conservation and Management. Baltimore: Johns Hopkins University Press; 2007. p. 293.

3. Torres-Flores JW, López-Wilchis R. Trophic niche and diet of Natalus Mexicanus (Chiroptera: Natalidae) in a tropical dry forest of western Mexico. Acta Chiropterologica. 2019;20: 343. doi: 10.3161/15081109ACC2018.20.2.006

4. Jacobs D. Intraspecific variation in wingspan and echolocation call flexibility might explain the use of different habitats by the insectivorous bat, Miniopterus schreibersii (Vespertilionidae: Miniopterinae). Acta Chiropterologica. 1999;1: 93–103.

5. Almenar D, Aihartza J, Goiti U, Salsamendi E, Garin I. Habitat selection and spatial use by the trawling bat Myotis capaccinii (Bonaparte, 1837). Acta Chiropterologica. 2006;8: 157–167. doi: 10.3161/150811006777070875

6. Siemers BM, Stilz P, Schnitzler HU. The acoustic advantage of hunting at low heights above water: behavioural experiments on the European ‘trawling’ bats Myotis capaccinii, M. dasycneme and M. daubentonii. J Exp Biol. 2001;204: 3843–3854. 11807102

7. Fenton MB, Bogdanowicz W. Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Can J Zool. 2002;80: 1004–1013. doi: 10.1139/z02-083

8. Segura-Trujillo CA, Willig MR, Álvarez-Castañeda ST. Correspondence between ecomorphotype and use of arthropod resources by bats of the genus Myotis. J Mammal. 2018;99: 659–667. doi: 10.1093/jmammal/gyy049

9. Falk B, Jakobsen L, Surlykke A, Moss CF. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments. J Exp Biol. 2014;217: 4356–4364. doi: 10.1242/jeb.114132 25394632

10. Geberl C, Brinkløv S, Wiegrebe L, Surlykke A. Fast sensory–motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept. Proc Natl Acad Sci. 2015;112: 4122–4127. doi: 10.1073/pnas.1424457112 25775538

11. Vollmer M, Möllmann K-P. High speed and slow motion: the technology of modern high-speed cameras. Phys Educ. 2011;46: 191. doi: 10.1088/0031-9120/46/2/007

12. Krüger F, Clare EL, Greif S, Siemers BM, Symondson WOC, Sommer RS. An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycneme and Myotis daubentonii. Mol Ecol. 2014;23: 3657–3671. doi: 10.1111/mec.12512 24164379

13. Painter ML, Chambers CL, Siders M, Doucett RR, Whitaker JO Jr., Phillips DL. Diet of spotted bats (Euderma maculatum) in Arizona as indicated by fecal analysis and stable isotopes. Can J Zool. 2009;87: 865–875. doi: 10.1139/Z09-075

14. Salvarina I. Bats and aquatic habitats: a review of habitat use and anthropogenic impacts. Mammal Rev. 2016;46: 131–143. doi: 10.1111/mam.12059

15. Hatch KA, Roeder BL, Buckman RS, Gale BH, Bunnell ST, Eggett DL, et al. Isotopic and gross fecal analysis of American black bear scats. Ursus. 2011;22: 133–140. doi: 10.2192/URSUS-D-10-00034.1

16. Salvarina I, Yohannes E, Siemers BM, Koselj K. Advantages of using fecal samples for stable isotope analysis in bats: evidence from a triple isotopic experiment. Rapid Commun Mass Spectrom. 2013;27: 1945–1953. doi: 10.1002/rcm.6649 23939961

17. Lam MMY, Martin-Creuzburg D, Rothhaupt K-O, Safi K, Yohannes E, Salvarina I. Tracking Diet Preferences of Bats Using Stable Isotope and Fatty Acid Signatures of Faeces. PLOS ONE. 2013;8: e83452. doi: 10.1371/journal.pone.0083452 24376703

18. Kelly JF. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool. 2000;78: 1–27. doi: 10.1139/z99-165

19. Pease AA, Capps KA, Rodiles-Hernández R, Castillo MM, Mendoza-Carranza M, Soria-Barreto M, et al. Trophic structure of fish assemblages varies across a Mesoamerican river network with contrasting climate and flow conditions. Food Webs. 2019;18: e00113. doi: 10.1016/j.fooweb.2019.e00113

20. Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 2002;83: 703–718.

21. Voigt CC, Lehmann D, Greif S. Stable isotope ratios of hydrogen separate mammals of aquatic and terrestrial food webs. Methods Ecol Evol. 2015;6: 1332–1340. doi: 10.1111/2041-210X.12414

22. Whitaker JO. Prey Selection in a Temperate Zone Insectivorous Bat Community. J Mammal. 2004;85: 460–469. doi: 10.1644/1383943

23. Layman CA, Araujo MS, Boucek R, Hammerschlag‐Peyer CM, Harrison E, Jud ZR, et al. Applying stable isotopes to examine food‐web structure: an overview of analytical tools. Biol Rev. 2011;87: 545–562. doi: 10.1111/j.1469-185X.2011.00208.x 22051097

24. Ballinger A, Lake PS. Energy and nutrient fluxes from rivers and streams into terrestrial food webs. Mar Freshw Res. 2006;57: 15–28. doi: 10.1071/MF05154

25. Pitt KA, Connolly RM, Meziane T. Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review. Hydrobiologia. 2009;616: 119–132. doi: 10.1007/s10750-008-9581-z

26. Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, Hagen W. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology. Academic Press; 2003. pp. 225–340. doi: 10.1016/s0065-2881(03)46005-7 14601414

27. Gladyshev MI, Sushchik NN, Makhutova ON. Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostaglandins Other Lipid Mediat. 2013;107: 117–126. doi: 10.1016/j.prostaglandins.2013.03.002 23500063

28. Denzinger A, Schnitzler HU. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front Physiol. 2013;4: 1–15. doi: 10.3389/fphys.2013.00001

29. Arlettaz R. Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii. J Anim Ecol. 1999;68: 460–471. doi: 10.1046/j.1365-2656.1999.00293.x

30. Arlettaz R, Ruedi M, Ibañez C, Palmeirim J, Hausser J. A new perspective on the zoogeography of the sibling mouse-eared bat species Myotis myotis and Myotis blythii: morphological, genetical and ecological evidence. J Zool. 1997;242: 45–62. doi: 10.1111/j.1469-7998.1997.tb02928.x

31. Dietz C, von Helversen O, Nill D. Handbuch der Fledermäuse Europas und Nordwestafrikas. Stuttgart: Franckh-Kosmos Verlags GmbH; 2007. Available: https://doi.org/10.1016/j.mambio.2007.10.005.

32. Vincent S, Nemoz M, Aulagnier S. Activity and foraging habitats of Miniopterus schreibersii (Chiroptera: Miniopteridae) in southern France: implications for its conservation. Hystrix Ital J Mammal. 2010;22. doi: 10.4404/hystrix-22.1–4524

33. McDonald JT, Rautenbach IL, Nel JAJ. Foraging ecology of bats observed at De Hoop Provincial Nature Reserve, southern Cape Province. South Afr J Wildl Res—24-Mon Delayed Open Access. 1990;20. Available: https://journals.co.za/content/wild/20/4/AJA03794369_2217.

34. Stoffberg S, Jacobs DS. The influence of wing morphology and echolocation on the gleaning ability of the insectivorous bat Myotis tricolor. Can J Zool. 2004;82: 1854–1863. doi: 10.1139/z04-172

35. Monadjem A, Jacobs DS. Myotis tricolor. The IUCN Red List of Threatened Species 2017: e.T14207A22063832. International Union for Conservation of Nature; 2016. doi: 10.1038/536143a

36. Miller-Butterworth CM, Eick G, Jacobs DS, Schoeman MC, Harley EH. Genetic and phenotypic differences between South African long-fingered bats, with a global miniopterine phylogeny. J Mammal. 2005;86: 1121–1135. doi: 10.1644/05-MAMM-A-021R1.1

37. Kunz TH, Parsons S. Ecological and Behavioral Methods for the Study of Bats [2nd. Ed.]. Baltimore: Johns Hopkins University Press; 2009. Available: https://jhupbooks.press.jhu.edu/content/ecological-and-behavioral-methods-study-bats.

38. Sikes RS, Gannon WL. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal. 2011;92: 235–253. doi: 10.1644/10-MAMM-F-355.1

39. Mason MK, Hockman D, Jacobs DS, Illing N. Evaluation of Maternal Features as Indicators of Asynchronous Embryonic Development in Miniopterus natalensis. Acta Chiropterologica. 2010;12: 161–171. doi: 10.3161/150811010X504662

40. Wilkinson GS, Brunet-Rossinni AK. Methods for age estimation and study of senescence in bats. In: Kunz TH, Parsons S, editors. Ecological and Behavioral Methods for the Study of Bats. Baltimore: John Hopkins University Press; 2009. pp. 315–325.

41. Schoeman MC, Jacobs DS. The relative influence of competition and prey defences on the trophic structure of animalivorous bat ensembles. Oecologia. 2011;166: 493–506. doi: 10.1007/s00442-010-1854-3 21128085

42. Schoeman CM, Jacobs DS. Support for the allotonic frequency hypothesis in an insectivorous bat community. Oecologia. 2003;134: 154–162. doi: 10.1007/s00442-002-1107-1 12647192

43. Ausden M, Drake M. Invertebrates. Second. In: Sutherland W, editor. Ecological census techniques. Second. Cambridge, United Kingdom: Cambridge University Press; 2006. pp. 214–249.

44. Chari LD, Moyo S, Richoux NB. Trophic ecology of adult male Odonata. II. Dietary contributions of aquatic food sources. Ecol Entomol. 2018;43: 15–27. doi: 10.1111/een.12459

45. Indarti E, Majid MIA, Hashim R, Chong A. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J Food Compos Anal. 2005;18: 161–170. doi: 10.1016/j.jfca.2003.12.007

46. Vesterinen EJ, Ruokolainen L, Wahlberg N, Peña C, Roslin T, Laine VN, et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol Ecol. 2016;25: 1581–1594. doi: 10.1111/mec.13564 26841188

47. Orr TJ, Ortega J, Medellín RA, Sánchez CD, Hammond KA. Diet choice in frugivorous bats: gourmets or operational pragmatists? J Mammal. 2016;97: 1578–1588. doi: 10.1093/jmammal/gyw122

48. R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. Available: http://www.R-project.org/.

49. Jackson AL, Inger R, Parnell AC, Bearhop S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R: Bayesian isotopic niche metrics. J Anim Ecol. 2011;80: 595–602. doi: 10.1111/j.1365-2656.2011.01806.x 21401589

50. Chari LD, Moyo S, Richoux NB. Trophic ecology of adult male Odonata. I. Dietary niche metrics by foraging guild, species, body size, and location. Ecol Entomol. 2018;43: 1–14. doi: 10.1111/een.12458

51. Antonio ES, Richoux NB. Trophodynamics of three decapod crustaceans in a temperate estuary using stable isotope and fatty acid analyses. Mar Ecol Prog Ser. 2014;504: 193–205. doi: 10.3354/meps10761

52. Whitaker JO, McCracken GF, Siemers BM. Food habits analysis of insectivorous bats. In: Kunz TH, editor. Ecological and Behavioral Methods for the Study of Bats. Washington D.C: Smithsonian Institution Press; 1988. pp. 171–189.

53. Stock B, Semmens BX. MixSIAR GUI User Manual. Version 3.1 [Internet]. Available: https://github.com/brianstock/MixSIAR.<doi:10.5281/zenodo.56159>. 2013.

54. Moore JW, Semmens BX. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett. 2008;11: 470–480. doi: 10.1111/j.1461-0248.2008.01163.x 18294213

55. Ward EJ, Semmens BX, Schindler DE. Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environ Sci Technol. 2010;44: 4645–4650. doi: 10.1021/es100053v 20496928

56. Montanari S. Discrimination factors of carbon and nitrogen stable isotopes in meerkat feces. PeerJ. 2017;5: e3436. doi: 10.7717/peerj.3436 28626611

57. Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, et al. Best practices for use of stable isotope mixing models in food-web studies. Can J Zool. 2014;92: 823–835. doi: 10.1139/cjz-2014-0127

58. Rundio DE, Lindley ST. Reciprocal fluxes of stream and riparian invertebrates in a coastal California basin with Mediterranean climate. Ecol Res. 2012;27: 539–550. doi: 10.1007/s11284-011-0920-6

59. Hutchinson GE. Thoughts on Aquatic Insects. BioScience. 1981;31: 495–500. doi: 10.2307/1308491

60. McCulloch GA, Wallis GP, Waters JM. Do insects lose flight before they lose their wings? Population genetic structure in subalpine stoneflies. Mol Ecol. 2009;18: 4073–4087. doi: 10.1111/j.1365-294X.2009.04337.x 19754508

61. Zettel H. A new species of Hydrometra (Insecta: Hemiptera: Heteroptera: Hydrometridae) from New Guinea. Ann Naturhistorischen Mus Wien Ser B Für Bot Zool. 2014;116: 13–19.

62. Phillipsen IC, Lytle DA. Aquatic insects in a sea of desert: population genetic structure is shaped by limited dispersal in a naturally fragmented landscape. Ecography. 2013;36: 731–743. doi: 10.1111/j.1600-0587.2012.00002.x

63. Boersma KS, Lytle DA. Overland dispersal and drought-escape behavior in a flightless aquatic insect, Abedus herberti (Hemiptera: Belostomatidae). Southwest Nat. 2014;59: 301–302. doi: 10.1894/N09-FRG-07.1

64. Phillipsen IC, Kirk EH, Bogan MT, Mims MC, Olden JD, Lytle DA. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects. Mol Ecol. 2015;24: 54–69. doi: 10.1111/mec.13003 25402260

65. Jacobs DS, Barclay RMR, Walker MH. The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? Oecologia. 2007;152: 583–594. doi: 10.1007/s00442-007-0679-1 17345101

66. Jacobs DS, Barclay RMR. Niche differentiation in two sympatric sibling bat species, Scotophilus dinganii and Scotophilus mhlanganii. J Mammal. 2009;90: 879–887. doi: 10.1644/08-MAMM-A-235.1

67. Phillips DL, Newsome SD, Gregg JW. Combining sources in stable isotope mixing models: alternative methods. Oecologia. 2005;144: 520–527. doi: 10.1007/s00442-004-1816-8 15711995

68. Newsome SD, Etnier MA, Gifford-Gonzalez D, Phillips DL, Tuinen M van, Hadly EA, et al. The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean. Proc Natl Acad Sci. 2007;104: 9709–9714. doi: 10.1073/pnas.0610986104 17526720

69. Fontaneto D, Tommaseo-Ponzetta M, Galli C, Risé P, Glew RH, Paoletti MG. Differences in Fatty Acid Composition between Aquatic and Terrestrial Insects Used as Food in Human Nutrition. Ecol Food Nutr. 2011;50: 351–367. doi: 10.1080/03670244.2011.586316 21888601

70. Catenazzi A, Donnelly MA. The Ulva connection: marine algae subsidize terrestrial predators in coastal Peru. Oikos. 2007;116: 75–86. doi: 10.1111/j.2006.0030–1299.15230.x

71. Abrantes K, Sheaves M. Incorporation of terrestrial wetland material into aquatic food webs in a tropical estuarine wetland. Estuar Coast Shelf Sci. 2008;80: 401–412. doi: 10.1016/j.ecss.2008.09.009

72. Dethier MN, Sosik E, Galloway AWE, Duggins DO, Simenstad CA. Addressing assumptions: variation in stable isotopes and fatty acids of marine macrophytes can confound conclusions of food web studies. Mar Ecol Prog Ser. 2013;478: 1–14. doi: 10.3354/meps10310

73. Moyo S, Richoux NB. Fatty acids reveal the importance of autochthonous non-vascular plant inputs to an austral river food web. Hydrobiologia. 2018;806: 139–156. doi: 10.1007/s10750-017-3347-4

74. Koussoroplis AM, Lemarchand C, Bec A, Desvilettes C, Amblard C, Fournier C, et al. From Aquatic to Terrestrial Food Webs: Decrease of the Docosahexaenoic Acid/Linoleic Acid Ratio. Lipids. 2008;43: 461–466. doi: 10.1007/s11745-008-3166-5 18335265

75. Todd VLG, Waters DA. Strategy-switching in the gaffing bat. J Zool. 2007;273: 106–113. doi: 10.1111/j.1469-7998.2007.00306.x

76. Von Frenckell B, Barclay RMR. Bat activity over calm and turbulent water. Can J Zool. 1987;65: 219–222. doi: 10.1139/z87-035

77. Mackey RL, Barclay RMR. The infl1uence of physical clutter and noise on the activity of bats over water. Can J Zool. 1989;67: 1167–1170. doi: 10.1139/z89-168

78. Kleynhans CJ, Thirion C, Roux F, Hoffmann A, Marais H, Diedericks G. Ecostatus of the crocodile river catchment, Inkomati River system. South Africa: Mpumalanga tourism agency; 2013 p. 126. Report No.: 10.13140.

79. Monadjem A, Taylor PJ, Cotterill FPD, Schoeman CM. Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis. 1st ed. South Africa: Wits University Press; 2010. Available: http://witspress.co.za/catalogue/bats-of-southern-and-central-africa.

80. Levin E, Barnea A, Yovel Y, Yom-Tov Y. Have introduced fish initiated piscivory among the long-fingered bat? Mamm Biol—Z Für Säugetierkd. 2006;71: 139–143. doi: 10.1016/j.mambio.2006.01.002

81. Akasaka T, Nakano D, Nakamura F. Influence of prey variables, food supply, and river restoration on the foraging activity of Daubenton’s bat (Myotis daubentonii) in the Shibetsu River, a large lowland river in Japan. Biol Conserv. 2009;142: 1302–1310. doi: 10.1016/j.biocon.2009.01.028

82. Gooderham J, Tsyrlin E. The Waterbug Book: A Guide to the Freshwater Macroinvertebrates of Temperate Australia. Collingwood, Vic: CSIRO Pub; 2002.

83. Almenar D, Aihartza J, Goiti U, Salsamendi E, Garin I. Diet and prey selection in the trawling long-fingered bat. J Zool. 2008;274: 340–348. doi: 10.1111/j.1469-7998.2007.00390.x

84. Rabinowitz A, Tuttle M. A test of the validity of two currently used methods of determining bat prey preferences. Acta Theriol (Warsz). 1982;27: 283–293. doi: 10.4098/AT.arch.82-25

85. Lee YF, McCracken GF. Dietary variation of Brazilian free-tailed bats links to migratory populations of pest insects. J Mammal. 2005;86: 67–76. doi: 10.1644/1545-1542(2005)086<0067:DVOBFB>2.0.CO;2

86. Senior P, Butlin RK, Altringham JD. Sex and segregation in temperate bats. Proc R Soc B Biol Sci. 2005;272: 2467–2473. doi: 10.1098/rspb.2005.3237 16271970

87. Hillen J, Kaster T, Pahle J, Kiefer A, Elle O, Griebeler EM, et al. Sex-specific habitat selection in an edge habitat specialist, the western barbastelle bat. Ann Zool Fenn. 2011;48: 180–190.

88. McNab BK, O’Donnell C. The behavioral energetics of New Zealand’s bats: Daily torpor and hibernation, a continuum. Comp Biochem Physiol A Mol Integr Physiol. 2018;223: 18–22. doi: 10.1016/j.cbpa.2018.05.001 29746908

89. Jones G, Rayner JMV. Flight performance, foraging tactics and echolocation in the trawling insectivorous bat Myotis adversus (Chiroptera: Vespertilionidae). J Zool. 1991;225: 393–412. doi: 10.1111/j.1469-7998.1991.tb03824.x

90. Neumann FH, Bamford MK. Shaping of modern southern African biomes: Neogene vegetation and climate changes. Trans R Soc South Afr. 2015;70: 195–212. doi: 10.1080/0035919X.2015.1072859

91. Norberg UM, Rayner JMV. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil Trans R Soc Lond B. 1987;316: 335–427. doi: 10.1098/rstb.1987.0030

92. Bogdanowicz W. Geographic variation and taxonomy of Daubenton’s Bat, Myotis daubentoni in Europe. J Mammal. 1990;71: 205–218. doi: 10.2307/1382169

93. Ciechanowski M, Zapart A, Kokurewicz T, Rusiński M, Lazarus M. Habitat selection of the pond bat (Myotis dasycneme) during pregnancy and lactation in northern Poland. J Mammal. 2017;98: 232–245. doi: 10.1093/jmammal/gyw108

94. Papadatou E, Butlin RK, Altringham JD. Seasonal roosting habits and population structure of the long-fingered bat Myotis capaccinii in Greece. J Mammal. 2008;89: 503–512. doi: 10.1644/07-MAMM-A-163R1.1

95. Aizpurua O, Garin I, Alberdi A, Salsamendi E, Baagøe H, Aihartza J. Fishing long-fingered bats (Myotis capaccinii) prey regularly upon exotic fish. PLoS ONE. 2013;8. doi: 10.1371/journal.pone.0080163 24312200

Článek vyšel v časopise


2020 Číslo 1