Restoration of cortical symmetry and binaural function: Cortical auditory evoked responses in adult cochlear implant users with single sided deafness


Autoři: Andre Wedekind aff001;  Gunesh Rajan aff001;  Bram Van Dun aff004;  Dayse Távora-Vieira aff001
Působiště autorů: Otolaryngology, Head and Neck Surgery, School of Surgery, University of Western Australia, Perth, Australia aff001;  Fiona Stanley Hospital, Perth, Australia aff002;  Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, Luzern, Switzerland aff003;  The National Acoustic Laboratories, Sydney, Australia aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227371

Souhrn

Background

Cochlear implantation for single-sided deafness (SSD) is the only treatment option with the potential to restore binaural hearing cues. Significant binaural benefit has been measured in adults by speech in noise and localisation tests, who receive a cochlear implant for SSD, however, little is known on the cortical changes that help provide this benefit. In the present study, detection of sound in the auditory cortex, speech testing and localisation was used to investigate the ability of a cochlear implant (CI) to restore auditory cortical latencies and improve binaural benefit in the adult SSD population.

Methods

Twenty-nine adults with acquired single-sided deafness who received a CI in adulthood were studied. Speech perception in noise was tested using the Bamford-Kowal-Bench speech-in-noise test, localisation ability was measured using the auditory speech sounds evaluation (AδE) localisation test and cortical auditory evoked responses, comparing N1-P2 latencies recorded from the normal hearing ear and cochlear implant were used to investigate the synchrony of the cortical pathway from the CI and normal hearing ear (NHe) with binaural hearing function.

Results

There was a significant improvement in speech perception in noise in all spatial configurations S0/N0 (Z = -3.066, p<0.002), S0/NHE (Z = -4.031, p<0.001), SCI/NHE (Z = -3.851, p<0.001). Localization significantly improved when tested with the cochlear implant on (p<0.001) with a shorter duration of deafness correlating to a greater improvement in localisation ability F(1:18) = 6.854; p = 0.017). There was no significant difference in N1-P2 latency recorded from the normal hearing ear and the CI.

Conclusion

Cortical auditory evoked response latencies recorded from the CI and NHe showed no significant difference, indicating that the detection of sound in the auditory cortex occurred simultaneously, providing the cortex with auditory information for binaural hearing.

Klíčová slova:

Deafness – Ears – Electrode recording – Hearing – Medical implants – Meniere disease – Sensory perception – Speech signal processing


Zdroje

1. Dillon H. Hearing Aids. 1 ed. Norwood: Boomerang Press; 2002.

2. Van de Heyning P, Vermeire K, Diebl M, Nopp P, Anderson I, De Ridder D. Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation. Annals of Otology, Rhinology & Laryngology. 2008;117(9):645–652.

3. Palau EM, Gil JLM, Vidal CM, González JCF, Cabrera OA, Macías ÁR. Tinnitus and cochlear implantation. Preliminary experience. Acta Otorrinolaringologica (English Edition). 2010;61(6):405–411.

4. Punte AK, Vermeire K, Hofkens A, De Bodt M, De Ridder D, Van de Heyning P. Cochlear implantation as a durable tinnitus treatment in single-sided deafness. Cochlear implants international. 2011;12(sup1):S26–S29.

5. Ramos Á, Polo R, Masgoret E, et al. Cochlear implant in patients with sudden unilateral sensorineural hearing loss and associated tinnitus. Acta Otorrinolaringologica (English Edition). 2012;63(1):15–20.

6. Vermeire K, Van de Heyning P. Binaural hearing after cochlear implantation in subjects with unilateral sensorineural deafness and tinnitus. Audiology and Neurotology. 2009;14(3):163–171. doi: 10.1159/000171478 19005250

7. Távora-Vieira D, Marino R, Acharya A, Rajan GP. The impact of cochlear implantation on speech understanding, subjective hearing performance, and tinnitus perception in patients with unilateral severe to profound hearing loss. Otology & Neurotology. 2015;36(3):430–436.

8. Arndt S, Aschendorff A, Laszig R, et al. Comparison of pseudobinaural hearing to real binaural hearing rehabilitation after cochlear implantation in patients with unilateral deafness and tinnitus. Otology & neurotology. 2011;32(1):39–47.

9. Firszt JB, Holden LK, Reeder RM, Waltzman SB, Arndt S. Auditory abilities after cochlear implantation in adults with unilateral deafness: a pilot study. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2012;33(8):1339.

10. Buechner A, Brendel M, Lesinski-Schiedat A, et al. Cochlear implantation in unilateral deaf subjects associated with ipsilateral tinnitus. Otology & Neurotology. 2010;31(9):1381–1385.

11. Stelzig Y, Jacob R, Mueller J. Preliminary speech recognition results after cochlear implantation in patients with unilateral hearing loss: a case series. Journal of medical case reports. 2011;5(1):343.

12. Prejban DA, Hamzavi J-S, Arnoldner C, et al. Single Sided Deaf Cochlear Implant Users in the Difficult Listening Situation: Speech Perception and Subjective Benefit. Otology & Neurotology. 2018;39(9):e803–e809.

13. Mertens G, De Bodt M, Van de Heyning P. Evaluation of long-term cochlear implant use in subjects with acquired unilateral profound hearing loss: focus on binaural auditory outcomes. Ear and hearing. 2017;38(1):117–125. doi: 10.1097/AUD.0000000000000359 27513880

14. Távora-Vieira D, Rajan GP, de Heyning Van P, Mertens G. Evaluating the Long-Term Hearing Outcomes of Cochlear Implant Users With Single-Sided Deafness. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2019.

15. Blamey P, Arndt P, Bergeron F, et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiology and Neurotology. 1996;1(5):293–306. doi: 10.1159/000259212 9390810

16. Tavora-Vieira D, Boisvert I, McMahon CM, Maric V, Rajan GP. Successful outcomes of cochlear implantation in long-term unilateral deafness: brain plasticity? Neuroreport. 2013;24(13):724–729. doi: 10.1097/WNR.0b013e3283642a93 23880870

17. Arndt S, Laszig R, Aschendorff A, Hassepass F, Beck R, Wesarg T. Cochlear implant treatment of patients with single-sided deafness or asymmetric hearing lossCochlea-Implantat-Versorgung von Patienten mit einseitiger Taubheit oder asymmetrischem Hörverlust. HNO. 2017;65(2):98–108.

18. Boisvert I, McMahon CM, Dowell RC. Long-term monaural auditory deprivation and bilateral cochlear implants. Neuroreport. 2012;23(3):195–199. doi: 10.1097/WNR.0b013e32834fab4b 22182978

19. Friedland DR, Venick HS, Niparko JK. Choice of ear for cochlear implantation: the effect of history and residual hearing on predicted postoperative performance. Otology & Neurotology. 2003;24(4):582–589.

20. Francis HW, Yeagle JD, Bowditch S, Niparko JK. Cochlear implant outcome is not influenced by the choice of ear. Ear and hearing. 2005;26(4):7S–16S.

21. Boisvert I, McMahon CM, Tremblay G, Lyxell B. Relative importance of monaural sound deprivation and bilateral significant hearing loss in predicting cochlear implantation outcomes. Ear and hearing. 2011;32(6):758–766. doi: 10.1097/AUD.0b013e3182234c45 21750463

22. Gilley PM, Sharma A, Dorman M, Martin K. Developmental changes in refractoriness of the cortical auditory evoked potential. Clinical Neurophysiology. 2005;116(3):648–657. doi: 10.1016/j.clinph.2004.09.009 15721079

23. Kelly AS, Purdy SC, Thorne PR. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clinical Neurophysiology. 2005;116(6):1235–1246. doi: 10.1016/j.clinph.2005.02.011 15978485

24. Pantev C, Dinnesen A, Ross B, Wollbrink A, Knief A. Dynamics of auditory plasticity after cochlear implantation: a longitudinal study. Cerebral cortex. 2005;16(1):31–36. doi: 10.1093/cercor/bhi081 15843632

25. Han J-H, Zhang F, Kadis DS, et al. Auditory cortical activity to different voice onset times in cochlear implant users. Clinical Neurophysiology. 2016;127(2):1603–1617. doi: 10.1016/j.clinph.2015.10.049 26616545

26. Groenen PA, Beynon AJ, Snik AF, Broek Pvd. Speech-evoked cortical potentials recognition in cochlear implant users and speech. Scandinavian audiology. 2001;30(1):31–40. doi: 10.1080/010503901750069554 11330917

27. Timm L, Agrawal D, Viola FC, et al. Temporal feature perception in cochlear implant users. PLoS One. 2012;7(9):e45375. doi: 10.1371/journal.pone.0045375 23028971

28. Tong Y, Melara RD, Rao A. P2 enhancement from auditory discrimination training is associated with improved reaction times. Brain research. 2009;1297:80–88. doi: 10.1016/j.brainres.2009.07.089 19651109

29. Tremblay KL, Shahin AJ, Picton T, Ross B. Auditory training alters the physiological detection of stimulus-specific cues in humans. Clinical Neurophysiology. 2009;120(1):128–135. doi: 10.1016/j.clinph.2008.10.005 19028139

30. Tremblay KL, Kraus N. Auditory training induces asymmetrical changes in cortical neural activity. Journal of Speech, Language, and Hearing Research. 2002;45(3):564–572. doi: 10.1044/1092-4388(2002/045) 12069008

31. Sandmann P, Plotz K, Hauthal N, de Vos M, Schönfeld R, Debener S. Rapid bilateral improvement in auditory cortex activity in postlingually deafened adults following cochlear implantation. Clinical Neurophysiology. 2015;126(3):594–607. doi: 10.1016/j.clinph.2014.06.029 25065298

32. Golding M, Dillon H, Seymour J, Carter L. The detection of adult cortical auditory evoked potentials (CAEPs) using an automated statistic and visual detection. In: Taylor & Francis; 2009.

33. Carter L, Dillon H, Seymour J, Seeto M, Van Dun B. Cortical auditory-evoked potentials (CAEPs) in adults in response to filtered speech stimuli. Journal of the American Academy of Audiology. 2013;24(9):807–822. doi: 10.3766/jaaa.24.9.5 24224988

34. Távora-Vieira D, Wedekind A, Marino R, Purdy SC, Rajan GP. Using aided cortical assessment as an objective tool to evaluate cochlear implant fitting in users with single-sided deafness. PloS one. 2018;13(2):e0193081. doi: 10.1371/journal.pone.0193081 29470548

35. Bench J, Kowal Å, Bamford J. The BKB (Bamford-Kowal-Bench) sentence lists for partially-hearing children. British journal of audiology. 1979;13(3):108–112. doi: 10.3109/03005367909078884 486816

36. Távora-Vieira D, Rajan GP. Cochlear implantation in children with congenital and noncongenital unilateral deafness: a case series. Otology & Neurotology. 2015;36(2):235–239.

37. Távora-Vieira D, De Ceulaer G, Govaerts PJ, Rajan GP. Cochlear implantation improves localization ability in patients with unilateral deafness. Ear and hearing. 2015;36(3):e93–e98. doi: 10.1097/AUD.0000000000000130 25474416

38. Grantham DW, Ashmead DH, Ricketts TA, Labadie RF, Haynes DS. Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants. Ear and Hearing. 2007;28(4):524–541. doi: 10.1097/AUD.0b013e31806dc21a 17609614

39. Brugge JF, Reale RA, Wilson GF. Sensitivity of auditory cortical neurons of kittens to monaural and binaural high frequency sound. Hearing research. 1988;34(2):127–140. doi: 10.1016/0378-5955(88)90100-1 3170355

40. Kral A, Hubka P, Tillein J. Strengthening of hearing ear representation reduces binaural sensitivity in early single-sided deafness. Audiology and Neurotology. 2015;20(Suppl. 1):7–12.

41. Hawley ML, Litovsky RY, Culling JF. The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer. The Journal of the Acoustical Society of America. 2004;115(2):833–843. doi: 10.1121/1.1639908 15000195

42. Arsenault MD, Punch JL. Nonsense-syllable recognition in noise using monaural and binaural listening strategies. The Journal of the Acoustical Society of America. 1999;105(3):1821–1830. doi: 10.1121/1.426720 10089605

43. Friedmann DR, Ahmed OH, McMenomey SO, Shapiro WH, Waltzman SB, Roland JT Jr. Single-sided deafness cochlear implantation: candidacy, evaluation, and outcomes in children and adults. Otology & Neurotology. 2016;37(2):e154–e160.

44. Rahne T, Plontke SK. Functional result after cochlear implantation in children and adults with single-sided deafness. Otology & Neurotology. 2016;37(9):e332–e340.

45. Litovsky RY, Moua K, Godar S, Kan A, Misurelli SM, Lee DJ. Restoration of spatial hearing in adult cochlear implant users with single-sided deafness. Hearing research. 2018.

46. Purdy SC, Kelly AS. Change in speech perception and auditory evoked potentials over time after unilateral cochlear implantation in postlingually deaf adults. Paper presented at: Seminars in hearing2016.

47. Legris E, Galvin J, Roux S, et al. Cortical reorganization after cochlear implantation for adults with single-sided deafness. PloS one. 2018;13(9):e0204402. doi: 10.1371/journal.pone.0204402 30248131

48. Kosaner J, Van Dun B, Yigit O, Gultekin M, Bayguzina S. Clinically recorded cortical auditory evoked potentials from paediatric cochlear implant users fitted with electrically elicited stapedius reflex thresholds. International journal of pediatric otorhinolaryngology. 2018;108:100–112. doi: 10.1016/j.ijporl.2018.02.033 29605337


Článek vyšel v časopise

PLOS One


2020 Číslo 1