Spatial risk assessment of global change impacts on Swedish seagrass ecosystems


Autoři: Diana Perry aff001;  Linus Hammar aff003;  Hans W. Linderholm aff004;  Martin Gullström aff001
Působiště autorů: Seagrass Ecology and Physiology Research Group, Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden aff001;  Department of Aquatic Resources, Swedish University of Agricultural Sciences, Lysekil, Sweden aff002;  Octopus Ink Research & Analysis, Gothenburg, Sweden aff003;  Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225318

Souhrn

Improved knowledge on the risk in ecologically important habitats on a regional scale from multiple stressors is critical for managing functioning and resilient ecosystems. This risk assessment aimed to identify seagrass ecosystems in southern Sweden that will be exposed to a high degree of change from multiple global change stressors in mid- and end-of-century climate change conditions. Risk scores were calculated from the expected overlap of three stressors: sea surface temperature increases, ocean acidification and wind driven turbid conditions. Three high-risk regions were identified as areas likely to be exposed to a particularly high level of pressure from the global stressors by the end of the century. In these areas it can be expected that there will be a large degree of stressor change from the current conditions. Given the ecological importance of seagrass meadows for maintaining high biodiversity and a range of other ecosystem services, these risk zones should be given high priority for incorporation into management strategies, which can attempt to reduce controllable stressors in order to mitigate the consequences of some of the impending pressures and manage for maintained ecosystem resilience.

Klíčová slova:

Ecosystem functioning – Ecosystems – Salinity – Sediment – Sweden – Wind – Ecological risk – Ocean acidification


Zdroje

1. United Nations Environment Programme (UNEP). The Emissions Gap Report 2017—A UN Environment Synthesis Report. United Nations Environ Program. 2017. ISBN 978-92-9253-062-4

2. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, et al. The Oceanic Sink for Anthropogenic CO2. Science (80-). 2004;305: 367–371. doi: 10.1126/science.1097403 15256665

3. Nagelkerken I, Connell SD. Global alteration of ocean ecosystem functioning due to increasing human CO 2 emissions. Proc Natl Acad Sci. 2015;2015: 201510856. doi: 10.1073/pnas.1510856112 26460052

4. Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso J-P, Havenhand JN, et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob Chang Biol. 2018; 1–57. doi: 10.1111/gcb.14102 29476630

5. Connell SD, Doubleday ZA, Foster NR, Hamlyn SB, Harley CDG, Helmuth B, et al. The duality of ocean acidification as a resource and a stressor. Ecology. 2018;99: 1005–1010. doi: 10.1002/ecy.2209 29714829

6. Havenhand J, Dahlgren T. Havsplanering med hänsyn till klimatförändringar. An assessment of the theoretical basis, and practical options, for incorporating the effects of projected climate change in marine spatial planning of Swedish waters. Gothenburg, Sweden; 2017.

7. Vuorinen I, Hänninen J, Rajasilta M, Laine P, Eklund J, Montesino-Pouzols F, et al. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas–implications for environmental monitoring. Ecol Indic. 2015;50: 196–205. doi: 10.1016/j.ecolind.2014.10.019 25737660

8. Hammar J, Mattsson M. Möjliga klimatrefugier i Östersjön baserat på två olika scenarier—Kunskapsunderlag för havsplanering. Havs- och vattenmyndighetens rapport 2017:37; 2018.

9. Ventura A, Schulz S, Dupont S. Maintained larval growth in mussel larvae exposed to acidified under- saturated seawater. Nat Publ Gr. 2016; 1–9. doi: 10.1038/srep23728 27020613

10. Takolander A, Cabeza M, Leskinen E. Climate change can cause complex responses in Baltic Sea macroalgae: A systematic review. J Sea Res. 2017;123: 16–29. doi: 10.1016/j.seares.2017.03.007

11. Eklöf JS, Alsterberg C, Havenhand JN, Sundbäck K, Wood HL, Gamfeldt L. Experimental climate change weakens the insurance effect of biodiversity. Ecol Lett. 2012;15: 864–872. doi: 10.1111/j.1461-0248.2012.01810.x 22676312

12. Baden S, Gullström M, Lundén B, Pihl L, Rosenberg R. Vanishing seagrass (Zostera marina, L.) in Swedish coastal waters. Ambio. 2003;32: 374–377. doi: 10.1579/0044-7447-32.5.374 14571969

13. Moksnes PO, Eriander L, Infantes E, Holmer M. Local Regime Shifts Prevent Natural Recovery and Restoration of Lost Eelgrass Beds Along the Swedish West Coast. Estuaries and Coasts. 2018; 1–20. doi: 10.1007/s12237-018-0382-y

14. IPCC. Climate Change 2014 Synthesis Report Summary Chapter for Policymakers. 2014.

15. Harvey BP, Gwynn-Jones D, Moore PJ. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol. 2013;3: 1016–1030. doi: 10.1002/ece3.516 23610641

16. Jentsch A, Kreyling J, Beierkuhnlein C. A new generation of climate change experiments: events, not trends. Front Ecol Environ. 2007;5: 365–374. doi: 10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2

17. Buapet P, Rasmusson LM, Gullström M, Björk M. Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS One. 2013;8: 1–9. doi: 10.1371/journal.pone.0083804 24376754

18. Zimmerman RC, Hill VJ, Jinuntuya M, Celebi B, Ruble D, Smith M, et al. Experimental impacts of climate warming and ocean carbonation on eelgrass Zostera marina. Mar Ecol Prog Ser. 2017;566: 1–15. doi: 10.3354/meps12051

19. Zimmerman RC, Hill VJ, Gallegos CL. Predicting effects of ocean warming, acidification, and water quality on Chesapeake region eelgrass. Limnol Oceanogr. 2015;60: 1781–1804. doi: 10.1002/lno.10139

20. George R, Gullström M, Mangora MM, Mtolera MSP, Björk M. High midday temperature stress has stronger effects on biomass than on photosynthesis: A mesocosm experiment on four tropical seagrass species. Ecol Evol. 2018; 1–10. doi: 10.1002/ece3.3952 29760891

21. Sobocinski KL, Orth RJ, Fabrizio MC, Latour RJ. Historical Comparison of Fish Community Structure in Lower Chesapeake Bay Seagrass Habitats. Estuaries and Coasts. 2013;36: 775–794. doi: 10.1007/s12237-013-9586-3

22. Alsterberg C, Eklöf JS, Gamfeldt L, Havenhand JN, Sundbäck K. Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc Natl Acad Sci. 2013;110: 8603–8608. doi: 10.1073/pnas.1303797110 23630263

23. Boyd PW, Hutchins DA. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar Ecol Prog Ser. 2012;470: 125–135. doi: 10.3354/meps10121

24. Murray C, Mach C, E M, Martone RG. Cumulative effects in marine ecosystem: scientific perspectives on its challenges and solutions. WWF-Canada Cent Ocean Solut. 2014; 1–60.

25. Norton SB, Rodier DJ, Gentile JH, van der Schalie WH, Wood WP, Slimak MW. A framework for ecological risk assessment at the EPA. Environ Toxicol Chem. 1992;11: 1663–1672. doi: MISC12

26. Hammar L, Gullström M. Applying Ecological Risk Assessment Methodology for Outlining Ecosystem Effects of Ocean Energy Technologies. 9th European Wave and Tidal Energy Conference. 2011. pp. 1–9.

27. Landis WG. The frontiers in ecological risk assessment at expanding spatial and temporal scales. Hum Ecol Risk Assess An Int J. 2003;9: 1415–1424. doi: 10.1080/10807030390250912

28. Queiros AM, Huebert KB, Keyl F, Fernandes JA, Stolte W, Maar M, et al. Solutions for ecosystem-level protection of ocean systems under climate change. Glob Chang Biol. 2016;22: 3927–3936. doi: 10.1111/gcb.13423 27396719

29. Stål J, Paulsen S, Pihl L, Rönnbäck P, Söderqvist T, Wennhage H. Coastal habitat support to fish and fisheries in Sweden: Integrating ecosystem functions into fisheries management. Ocean Coast Manag. 2008;51: 594–600. doi: 10.1016/j.ocecoaman.2008.06.006

30. Larkum AWD, Orth RJ, Duarte CM. Seagrasses: Biology, Ecology and Conservation. 2006.

31. Green E, Short FT. World Atlas of Seagrasses. 2003.

32. Lefcheck JS, Hughes BB, Johnson AJ, Pfirrmann BW, Rasher DB, Smyth AR, et al. Are coastal habitats important nurseries? A meta-analysis. Conserv Lett. 2019; 1–12. doi: 10.1111/conl.12645

33. Perry D, Staveley T, Deyanova D, Baden S, Dupont S, Hernroth B, et al. Global environmental changes negatively impact temperate seagrass ecosystems. Ecosphere. 2019;10: e02986. doi: 10.1002/ecs2.2986

34. Norton SB, Rodier DJ, Schalie WH van der, Wood WP, Slimak MW, Gentile JH. A framework for ecological risk assessment at the EPA. Environ Toxicol Chem. 1992;11: 1663–1672. doi: 10.1002/etc.5620111202

35. Meier HEM, Hordoir R, Andersson HC, Dieterich C, Eilola K, Gustafsson BG, et al. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Clim Dyn. 2012;39: 2421–2441. doi: 10.1007/s00382-012-1339-7

36. NOAA. Climate Data Online. Available: https://www.ncdc.noaa.gov/cdo-web/

37. Climate Data Operator. Available: http://www.mpimet.mpg.de/cdo

38. Boström C, Baden SP, Krause-Jensen D. The seagrasses of Scadinavia and the Baltic Sea. World Atlas of Seagrasses. 2003.

39. Baden SP, Boström C. The leaf canopy of seagrass beds: faunal community structure and function in a salinity gradient along the Swedish coast. In: K. R, editor. Ecological Studies (Analysis and Synthesis). Heidelberg: Springer Berlin; 2001. pp. 213–236. doi: 10.1007/978-3-642-56557-1

40. Vuorinen I, Hänninen J, Rajasilta M, Laine P, Eklund J, Montesino-Pouzols F, et al. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas-implications for environmental monitoring. Ecol Indic. 2015;50: 196–205. doi: 10.1016/j.ecolind.2014.10.019 25737660

41. Boström C, Baden S, Bockelmann AC, Dromph K, Fredriksen S, Gustafsson C, et al. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: Implications for coastal management and conservation. Aquat Conserv Mar Freshw Ecosyst. 2014;24: 410–434. doi: 10.1002/aqc.2424 26167100

42. Baden S, Gullström M, Lundén B, Pihl L, Rosenberg R. Vanishing Seagrass (Zostera marina, L.) in Swedish Coastal Waters. AMBIO A J Hum Environ. 2003;32: 374–377. doi: 10.1579/0044-7447-32.5.374 14571969

43. Baden S, Emanuelsson A, Pihl L, Svensson C, Åberg P. Shift in seagrass food web structure over decades is linked to overfishing. Mar Ecol Prog Ser. 2012;451: 61–73. doi: 10.3354/meps09585

44. Moksnes P, Gullström M, Tryman K, Baden S. Trophic cascades in a temperate seagrass community. Oikos. 2008;117: 763–777. doi: 10.1111/j.2008.0030–1299.16521.x

45. Johannesson K. The bare zone of Swedish rocky shores: why is it there? Oikos. 1989;54: 77–86.

46. Envall M, Isaksson I. Ålgräsutbredning (Zostera sp.) i Västra Götalands län sommaren 2008. 2012.

47. SwAM. Symphony–integrerat planeringsstöd för statlig havsplanering utifrån en ekosystemansats. 2018.

48. Lundén B, Gullström M. Satellite remote sensing for monitoring of vanishing seagrass in Swedish coastal waters. Nor J Geogr. 2003;57: 121–124. doi: 10.1080/00291950310001379

49. Vinagre C, Mendonça V, Cereja R, Abreu-Afonso F, Dias M, Mizrahi D, et al. Ecological traps in shallow coastal waters-Potential effect of heat-waves in tropical and temperate organisms. PLoS One. 2018;13: 1–17. doi: 10.1371/journal.pone.0192700 29420657

50. Meier HEM, Andersson H, Dieterich C, Eilola K, Gustafsson B, Höglund A, et al. Transient scenario simulations for the Baltic Sea Region during the 21st century. Oceanografi. 2011;108. ISSN 0283-7714

51. Nakicenovic N, Davidson O, Davis G, Grübler A, Kram T, Lebre La Rovere E, et al. Summary for Policymakers: Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. IPCC. 2000. 92-9169-113-5

52. Meier HEM, Eilola K, Almroth E. Climate-related changes in marine ecosystems simulated with a 3-dimensional coupled physical-biogeochemical model of the Baltic sea. Clim Res. 2011;48: 31–55. doi: 10.3354/cr00968

53. Meier HEM, Höglund A, Döscher R, Andersson H, Löptien U, Kjellström E. Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia. 2011;53: 193–227. doi: 10.5697/oc.53-1-TI.193

54. Schulzweida U. CDO User Guide. 2017. pp. 1–206. Available: https://code.zmaw.de/projects/cdo/embedded/cdo.pdf

55. UCAR. Unidata netCDF.

56. Pihl L, Svenson A, Moksnes PO, Wennhage H. Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure. J Sea Res. 1999;41: 281–294. doi: 10.1016/S1385-1101(99)00004-0

57. Chan F, Barth JA, Blanchette CA, Byrne RH, Chavez F, Cheriton O, et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci Rep. 2017;7: 1–7. doi: 10.1038/s41598-016-0028-x

58. Baden SP, Loo L, Pihl L, Rosenberg R. Effects of Eutrophication on Benthic Communities Including Fish: Swedish West Coast. Ambio. 1990;19: 113–122.

59. Evans AS, Webb KL, Penhale PA. Photosynthetic temperature acclimation in two coexisting seagrasses, Zostera marina L. and Ruppia maritima L. Aquat Bot. 1986;24: 185–197.

60. Zimmerman RC, Smith RD, Alberte RS. Thermal acclimation and whole-plant carbon balance in Zostera marina L. (eelgrass). J Exp Mar Bio Ecol. 1989;130: 93–109.

61. Nyqvist A, André C, Gullström M, Baden SP, Åberg P. Dynamics of seagrass meadows on the Swedish Skagerrak coast. Ambio. 2009;38: 85–88. doi: 10.1579/0044-7447-38.2.85 19431937

62. Loreau M, Naeem S, Inchausti P. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science (80-). 2001;294: 804–809. Available: http://www.sciencemag.org/content/294/5543/804.short

63. Vinebrooke RD, Cottingham KL, Norberg J, Scheffer M, Dodson SI, Maberly SC, et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Nord Soc Oikos. 2004;104: 451–457. doi: 10.1111/j.0030-1299.2004.13255.x

64. Pihl L, Baden S, Kautsky N, Rönnbäck P, Söderqvist T, Wennhage H. Shift in fish assemblage structure due to loss of seagrass Zostera marina habitats in Sweden. Estuar Coast Shelf Sci. 2006;67: 123–132. doi: 10.1016/j.ecss.2005.10.016

65. Perry D, Staveley TAB, Hammar L, Meyers A, Lindborg R, Gullström M. Temperate fish community variation over seasons in relation to large-scale geographic seascape variables. Can J Fish Aquat Sci. 2017. doi: 10.1139/cjfas-2016-0396

66. Perry D, Staveley TAB, Gullström M. Habitat Connectivity of Fish in Temperate Shallow-Water Seascapes. Front Mar Sci. 2018;4: 1–12. doi: 10.3389/fmars.2017.00440

67. Staveley TAB, Perry D, Lindborg R, Gullström M. Seascape structure and complexity influence temperate seagrass fish assemblage composition. Ecography (Cop). 2017;40: 936–946. doi: 10.1111/ecog.02745

68. Staveley TAB, Jacoby DMP, Perry D, van der Meijs F, Lagenfelt I, Cremle M, et al. Sea surface temperature dictates movement and habitat connectivity of Atlantic cod in a coastal fjord system. Ecol Evol. 2019; 1–11. doi: 10.1002/ece3.5453 31463005


Článek vyšel v časopise

PLOS One


2020 Číslo 1