Distinctive effect of anesthetics on the effect of limb remote ischemic postconditioning following ischemic stroke

Autoři: Gangling Chen aff001;  Pradip Kumar Kamat aff001;  Abdullah Shafique Ahmad aff001;  Sylvain Doré aff001
Působiště autorů: Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America aff001;  Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China aff002;  Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, United States of America aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227624


Limb remote ischemic postconditioning (LRIP) has been reported as an effective method to reduce the induced experimental stroke damage after ischemic reperfusion (IR) injury. Studies suggest that anesthetics used during induction of ischemic stroke can reduce IR injury, which could affect the actual mechanisms of neuroprotection by LRIP. This study focuses on the comparative effects of anesthetics such as isoflurane and ketamine-xylazine on ischemic injury when used during LRIP. Adult C57BL/6 mice were anesthetized by isoflurane or halothane, and transient middle cerebral artery occlusion (MCAO) was induced through insertion of the filament. Under isoflurane or ketamine-xylazine anesthesia, LRIP was performed after 90 min of reperfusion by carrying out three cycles of 5 min ischemia/5 min reperfusion of the bilateral hind limbs for one session per day for a total of 3 days. Results showed that the use of different anesthetics—isoflurane or ketamine-xylazine—during LRIP had no effects on body weight. However, LRIP was able to improve neurological function as observed by the neurological deficit score in ischemic mice. Interestingly, the neurological deficit in the group where ketamine-xylazine was used was better than the group where isoflurane was used during LRIP. Furthermore, the LRIP was able to prolong the period of the ischemic mice on the rotarod and this effect was more significant in the groups where ketamine-xylazine was used during LRIP. Moreover, LRIP significantly attenuated the infarction volume; however, this effect was independent of the anesthetic used during LRIP. From these results, we conclude that ischemic mice that were subjected to LRIP under ketamine-xylazine anesthesia had better neurological deficit outcomes after stroke.

Klíčová slova:

Anesthesia – Anesthetics – Brain damage – Cerebral ischemia – Infarction – Ischemic stroke – Reperfusion – Surgical and invasive medical procedures


1. Chen G, Ye X, Zhang J, Tang T, Li L, Lu P, et al. Limb Remote Ischemic Postconditioning Reduces Ischemia-Reperfusion Injury by Inhibiting NADPH Oxidase Activation and MyD88-TRAF6-P38MAP-Kinase Pathway of Neutrophils. Int J Mol Sci. 2016;17. doi: 10.3390/ijms17121971 27898007

2. Zeynalov E, Shah ZA, Li R-C, Doré S. Heme oxygenase 1 is associated with ischemic preconditioning-induced protection against brain ischemia. Neurobiol Dis. 2009;35: 264–269. doi: 10.1016/j.nbd.2009.05.010 19465127

3. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20: 84–91. doi: 10.1161/01.str.20.1.84 2643202

4. Sakai H, Sheng H, Yates RB, Ishida K, Pearlstein RD, Warner DS. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology. 2007;106: 92–9. doi: 10.1097/00000542-200701000-00017 17197850

5. Xiong L, Zheng Y, Wu M, Hou L, Zhu Z, Zhang X, et al. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg. 2003;96: 233–7. doi: 10.1097/00000539-200301000-00047 12505958

6. Guler L, Bozkirli F, Bedirli N, Unal Y, Guler A, Oztas Y, et al. Comparison of the Effects of Dexmedetomidine vs. Ketamine in Cardiac Ischemia/Reperfusion Injury in Rats—Preliminary Study. Adv Clin Exp Med. 2014;23: 683–689. doi: 10.17219/acem/37214 25491680

7. Liman S, Cheung CW, Wong KL, Tai W, Qiu Q, Ng KF, et al. Preventive Treatment with Ketamine Attenuates the Ischaemia-Reperfusion Response in a Chronic Postischaemia Pain Model. Oxid Med Cell Longev. 2015;2015: 380403. doi: 10.1155/2015/380403 26161236

8. Liu J, Yang S, Zhang X, Liu G, Yue X. Isoflurane reduces oxygen-glucose deprivation-induced oxidative, inflammatory, and apoptotic responses in H9c2 cardiomyocytes. Am J Transl Res. 2016;8: 2597–2608. 27398143

9. Xue Q-S, Yu B-W, Wang Z-J, Chen H-Z. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices. Acta Pharmacol Sin. 2004;25: 115–120. 14704132

10. Mathews KS, Toner CC, McLaughlin DP, Stamford JA. Comparison of ketamine stereoisomers on tissue metabolic activity in an in vitro model of global cerebral ischaemia. Neurochem Int. 2001;38: 367–372. doi: 10.1016/s0197-0186(00)00125-x 11222916

11. Xiao F, Xiong L, Wang Q, Zhou L, Zhou Q. Ketamine inhibits c-Jun protein expression in mouse hippocampus following cerebral ischemia/reperfusion injury. Neural Regen Res. 2012;7: 833–836. doi: 10.3969/j.issn.1673-5374.2012.11.006 25737710

12. Ridenour TR, Warner DS, Todd MM, Baker MT. Effects of ketamine on outcome from temporary middle cerebral artery occlusion in the spontaneously hypertensive rat. Brain Res. 1991;565: 116–122. doi: 10.1016/0006-8993(91)91742-j 1773349

13. Li J, Yuan T, Zhao X, Lv G-Y, Liu H-Q. Protective effects of sevoflurane in hepatic ischemia-reperfusion injury. Int J Immunopathol Pharmacol. 2016;29: 300–307. doi: 10.1177/0394632016638346 26966142

14. Sloan RC, Rosenbaum M, O’Rourke D, Oppelt K, Frasier CR, Waston CA, et al. High doses of ketamine-xylazine anesthesia reduce cardiac ischemia-reperfusion injury in guinea pigs. J Am Assoc Lab Anim Sci. 2011;50: 349–354. 21640030

15. Ramagiri S, Taliyan R. Protective effect of remote limb post conditioning via upregulation of heme oxygenase-1/BDNF pathway in rat model of cerebral ischemic reperfusion injury. Brain Res. 2017;1669: 44–54. doi: 10.1016/j.brainres.2017.05.016 28535981

16. Qi Z-F, Luo Y-M, Liu X-R, Wang R-L, Zhao H-P, Yan F, et al. AKT/GSK3β-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model. CNS Neurosci Ther. 2012;18: 965–973. doi: 10.1111/cns.12016 23191937

17. Frankowski JC, DeMars KM, Ahmad AS, Hawkins KE, Yang C, Leclerc JL, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5: 17956. doi: 10.1038/srep17956 26648273

18. Redel A, Stumpner J, Tischer-Zeitz T, Lange M, Smul TM, Lotz C, et al. Comparison of isoflurane-, sevoflurane-, and desflurane-induced pre- and postconditioning against myocardial infarction in mice in vivo. Exp Biol Med. 2009;234: 1186–1191. doi: 10.3181/0902-RM-58 19596824

19. Lee JJ, Li L, Jung H-H, Zuo Z. Postconditioning with isoflurane reduced ischemia-induced brain injury in rats. Anesthesiology. 2008;108: 1055–1062. doi: 10.1097/ALN.0b013e3181730257 18497606

20. Baumert JH, Hein M, Gerets C, Baltus T, Hecker KE, Rossaint R. The effect of xenon on isoflurane protection against experimental myocardial infarction. J Cardiothorac Vasc Anesth. 2009;23: 614–618. doi: 10.1053/j.jvca.2009.01.028 19362018

21. Kapinya KJ, Prass K, Dirnagl U. Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism? Neuroreport. 2002;13: 1431–1435. doi: 10.1097/00001756-200208070-00017 12167768

22. Schmidt R, Tritschler E, Hoetzel A, Loop T, Humar M, Halverscheid L, et al. Heme oxygenase-1 induction by the clinically used anesthetic isoflurane protects rat livers from ischemia/reperfusion injury. Ann Surg. 2007;245: 931–942. doi: 10.1097/01.sla.0000256891.45790.4d 17522519

23. Toner CC, Milne AJ, Blatchford KL, McLaughlin DP, Stamford JA. An assessment of the cerebroprotective potential of volatile anaesthetics using two independent methods in an in vitro model of cerebral ischaemia. Brain Res. 2002;958: 390–398. doi: 10.1016/s0006-8993(02)03696-x 12470875

24. Schlattmann P, Dirnagl U. Statistics in experimental cerebrovascular research: comparison of more than two groups with a continuous outcome variable. J Cereb Blood Flow Metab. 2010;30: 1558–1563. doi: 10.1038/jcbfm.2010.95 20571520

25. Dirnagl U, Macleod MR. Stroke research at a road block: the streets from adversity should be paved with meta-analysis and good laboratory practice. Br J Pharmacol. 2009;157: 1154–1156. doi: 10.1111/j.1476-5381.2009.00211.x 19664136

26. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8: e1000412. doi: 10.1371/journal.pbio.1000412 20613859

27. Ahmad AS. PGD2 DP1 receptor stimulation following stroke ameliorates cerebral blood flow and outcomes. Neuroscience. 2014;279: 260–268. doi: 10.1016/j.neuroscience.2014.08.050 25218962

28. Ahmad AS, Yun YT, Ahmad M, Maruyama T, Doré S. Selective blockade of PGE2 EP1 receptor protects brain against experimental ischemia and excitotoxicity, and hippocampal slice cultures against oxygen-glucose deprivation. Neurotox Res. 2008;14: 343–351. doi: 10.1007/bf03033858 19073437

29. Glushakov AV, Robbins SW, Bracy CL, Narumiya S, Doré S. Prostaglandin F2α FP receptor antagonist improves outcomes after experimental traumatic brain injury. J Neuroinflammation. 2013;10: 132. doi: 10.1186/1742-2094-10-132 24172576

30. Leclerc JL, Ahmad AS, Singh N, Soshnik-Schierling L, Greene E, Dang A, et al. Intracerebral hemorrhage outcomes following selective blockade or stimulation of the PGE2 EP1 receptor. BMC Neurosci. 2015;16: 48. doi: 10.1186/s12868-015-0182-2 26232001

31. Sunyer B, Patil S, Frischer C, Höger H, Selcher J, Brannath W, et al. Strain-dependent effects of SGS742 in the mouse. Behav Brain Res. 2007;181: 64–75. doi: 10.1016/j.bbr.2007.03.025 17467069

32. Ahmad M, Saleem S, Zhuang H, Ahmad AS, Echeverria V, Sapirstein A, et al. 1-hydroxyPGE reduces infarction volume in mouse transient cerebral ischemia. Eur J Neurosci. 2006;23: 35–42. doi: 10.1111/j.1460-9568.2005.04540.x 16420413

33. Chen G, Yang J, Lu G, Guo J, Dou Y. Limb remote ischemic post-conditioning reduces brain reperfusion injury by reversing eNOS uncoupling. Indian J Exp Biol. 2014;52: 597–605. 24956890

34. Ren C, Yan Z, Wei D, Gao X, Chen X, Zhao H. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 2009;1288: 88–94. doi: 10.1016/j.brainres.2009.07.029 19631625

35. Andreka G, Vertesaljai M, Szantho G, Font G, Piroth Z, Fontos G, et al. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Heart. 2007;93: 749–752. doi: 10.1136/hrt.2006.114504 17449499

36. Tsubota H, Marui A, Esaki J, Bir SC, Ikeda T, Sakata R. Remote postconditioning may attenuate ischaemia-reperfusion injury in the murine hindlimb through adenosine receptor activation. Eur J Vasc Endovasc Surg. 2010;40: 804–809. doi: 10.1016/j.ejvs.2010.08.014 20869891

37. Khatibi NH, Ma Q, Rolland W, Ostrowski R, Fathali N, Martin R, et al. Isoflurane posttreatment reduces brain injury after an intracerebral hemorrhagic stroke in mice. Anesth Analg. 2011;113: 343–348. doi: 10.1213/ANE.0b013e31821f9524 21596881

38. Zheng S, Zuo Z. Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol Pharmacol. 2004;65: 1172–1180. doi: 10.1124/mol.65.5.1172 15102945

39. Zhang J-J, Zhu J-J, Hu Y-B, Xiang G-H, Deng L-C, Wu F-Z, et al. Transplantation of bFGF-expressing neural stem cells promotes cell migration and functional recovery in rat brain after transient ischemic stroke. Oncotarget. 2017;8: 102067–102077. doi: 10.18632/oncotarget.22155 29254225

40. Wahl F, Allix M, Plotkine M, Boulu RG. Neurological and behavioral outcomes of focal cerebral ischemia in rats. Stroke. 1992;23: 267–272. doi: 10.1161/01.str.23.2.267 1561657

41. Cruz FF, Rocco PRM, Pelosi P. Anti-inflammatory properties of anesthetic agents. Crit Care. 2017;21: 67. doi: 10.1186/s13054-017-1645-x 28320449

42. Lee HT, Kim M, Jan M, Emala CW. Anti-inflammatory and antinecrotic effects of the volatile anesthetic sevoflurane in kidney proximal tubule cells. Am J Physiol Renal Physiol. 2006;291: F67–78. doi: 10.1152/ajprenal.00412.2005 16478975

43. Pi Z, Lin H, Yang J. Isoflurane reduces pain and inhibits apoptosis of myocardial cells through the phosphoinositide 3-kinase/protein kinase B signaling pathway in mice during cardiac surgery. Mol Med Rep. 2018;17: 6497–6505. doi: 10.3892/mmr.2018.8642 29488606

44. Liang J, Wu S, Xie W, He H. Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. Drug Des Devel Ther. 2018;12: 845–853. doi: 10.2147/DDDT.S160046 29713142

45. Xu D-J, Wang B, Zhao X, Zheng Y, Du J-L, Wang Y-W. General anesthetics protects against cardiac arrest-induced brain injury by inhibiting calcium wave propagation in zebrafish. Mol Brain. 2017;10: 44. doi: 10.1186/s13041-017-0323-x 28870222

46. Do Vale EM, Xavier CC, Nogueira BG, Campos BC, de Aquino PEA, da Costa RO, et al. Antinociceptive and Anti-Inflammatory Effects of Ketamine and the Relationship to Its Antidepressant Action and GSK3 Inhibition. Basic Clin Pharmacol Toxicol. 2016;119: 562–573. doi: 10.1111/bcpt.12637 27390215

Článek vyšel v časopise


2020 Číslo 1