Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution

Autoři: Hong Zhang aff001;  Kenji Yarinome aff003;  Ryosuke Kawakami aff004;  Kohei Otomo aff004;  Tomomi Nemoto aff004;  Yosuke Okamura aff001
Působiště autorů: Department of Applied Chemistry, School of Engineering, Tokai University, Kanagawa, Japan aff001;  Micro/Nano Technology Center, Tokai University, Kanagawa, Japan aff002;  Course of Applied Science, Graduate School of Engineering, Tokai University, Kanagawa, Japan aff003;  Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan aff004;  Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan aff005;  Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan aff006;  Exploratory Research Center on Life and Living Systems, National Institute of Natural Sciences, Aichi, Japan aff007;  National Institute for Physiological Sciences, Aichi, Japan aff008;  The Graduate University for Advanced Studies (SOKENDAI), Aichi, Japan aff009
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227650


In order to achieve deep tissue imaging, a number of optical clearing agents have been developed. However, in a conventional microscopy setup, an objective lens can only be moved until it is in contact with a coverslip, which restricts the maximum focusing depth into a cleared tissue specimen. Until now, it is still a fact that the working distance of a high magnification objective lens with a high numerical aperture is always about 100 μm. In this study, a polymer thin film (also called as nanosheet) composed of fluoropolymer with a thickness of 130 nm, less than one-thousandth that of a 170 μm thick coverslip, is employed to replace the coverslip. Owing to its excellent characteristics, such as high optical transparency, mechanical robustness, chemical resistance, and water retention ability, nanosheet is uniquely capable of providing a coverslip-free imaging. By wrapping the tissue specimen with a nanosheet, an extra distance of 170 μm for the movement of objective lens is obtained. Results show an equivalently high resolution imaging can be obtained if a homogenous refractive index between immersion liquid and mounting media is adjusted. This method will facilitate a variety of imaging tasks with off-the-shelf high magnification objectives.

Klíčová slova:

Fluorescence imaging – Gel electrophoresis – Imaging techniques – Neuroimaging – Oils – Optical lenses – Thin films – Nanowires


1. Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, et al. Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci. 2011; 14: 1481–1488. doi: 10.1038/nn.2928 21878933

2. Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 2012; 7: 1983–1995. doi: 10.1038/nprot.2012.119 23060243

3. Chung K, Wallace J, Kim S-Y, Kalyanasundaram S, Andalman AS, Davidson TJ, Structural and molecular interrogation of intact biological systems. Nature. 2013; 497: 332–337. doi: 10.1038/nature12107 23575631

4. Ke M-T, Fujimoto S, Imai T. SeeDB: A simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 2013; 16: 1154–1161. doi: 10.1038/nn.3447 23792946

5. Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C. ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development. 2013; 140: 1364–1368. doi: 10.1242/dev.091844 23444362

6. Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 2014; 157: 726–739. doi: 10.1016/j.cell.2014.03.042 24746791

7. Zhang H, Masuda A, Kawakami R, Yarinome K, Saito R, Nagase Y, et al. Fluoropolymer nanosheet as a wrapping mount for high-quality tissue imaging. Adv Mater. 2017; 29: 1703139.

8. Zhang H, Aoki T, Hatano K, Kabayama K, Nakagawa M, Fukase K, et al. Porous nanosheet wrapping for live imaging of suspension cells. J Mater Chem B. 2018; 6: 6622–6628.

9. Okamura Y, Kabata K, Kinoshita M, Saitoh D, Takeoka S. Free-standing biodegradable poly(lactic acid) nanosheet for sealing operations in surgery. Adv Mater. 2009; 21: 4388–4392. doi: 10.1002/adma.200901035 26042950

10. Okamura Y, Schmidt R, Raschke I, Hintze M, Takeoka S, Egner A, et al. A few immobilized thrombins are sufficient for platelet spreading. Biophys J. 2011; 100: 1855–1863. doi: 10.1016/j.bpj.2011.02.052 21504721

11. Okamura Y, Kabata K, Kinoshita M, Miyazaki H, Saito A, Fujie T, et al. Fragmentation of poly(lactic acid) nanosheets and patchwork treatment for burn wounds. Adv Mater. 2013; 25: 545–551. doi: 10.1002/adma.201202851 23117996

12. Komachi T, Sumiyoshi H, Inagaki Y, Takeoka S, Nagase Y, Okamura Y. Adhesive and robust multilayered poly(lactic acid) nanosheets for hemostatic dressing in liver injury model. J Biomed Mater Res B. 2017; 105: 1747–1757.

13. Huang KC, Yano F, Murahashi Y, Takano S, Kitaura Y, Chang SH, et al. Sandwich-type PLLA-nanosheets loaded with BMP-2 induce bone regeneration in critical-sized mouse calvarial defects. Acta Biomater. 2017; 59: 12–20. doi: 10.1016/j.actbio.2017.06.041 28666885

14. Murahashi Y, Yano F, Nakamoto H, Maenohara Y, Iba K, Yamashita T, et al. Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomater. 2019; 85: 172–179. doi: 10.1016/j.actbio.2018.12.031 30583110

15. Fong NR, Berini P, Tait RN. Mechanical properties of thin free-standing CYTOP membranes. J Microelectromech Syst. 2010; 19: 700–705.

16. Roth G, Dicke U. Evolution of the brain and intelligence. Trends Cogn Sci. 2005; 9: 250–257. doi: 10.1016/j.tics.2005.03.005 15866152

17. Fadero TC, Maddox PS. Live imaging looks deeper. eLife. 2017; 6: e30515. doi: 10.7554/eLife.30515 28869747

18. Minami K, Hayashi T, Sato K, Nakahara T. Development of micro mechanical device having two-dimensional array of micro chambers for cell stretching. Biomed Microdevices. 2018; 20: 10. doi: 10.1007/s10544-017-0256-2 29305659

19. Mizutani H, Ono S, Ushiku T, Kudo Y, Ikemura M, Kageyama N, et al. Transparency-enhancing technology allows three-dimensional assessment of gastrointestinal mucosa: A porcine model. Pathol Int. 2018; 68: 102–108. doi: 10.1111/pin.12627 29341375

20. Sawada K, Kawakami R, Shigemoto R, Nemoto T. Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices. Eur J Neurosci. 2018; 47: 1033–1042. doi: 10.1111/ejn.13901 29512842

21. Mathew M, Santos SICO, Zalvidea D, Loza-Alvarez P. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: Upgrading a commercial confocal inverted microscope. Rev Sci Instrum. 2009; 80: 073701. doi: 10.1063/1.3142225 19655950

22. Hell SW, Reiner G, Cremer C, Stelzer EHK. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J Microsc. 1993; 169: 391–405.

23. Gomariz A, Helbling PM, Isringhausen S, Suessbier U, Becker A, Boss A, et al. Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nat Commun. 2018; 9: 2532. doi: 10.1038/s41467-018-04770-z 29955044

24. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000; 28: 41–51. doi: 10.1016/s0896-6273(00)00084-2 11086982

25. Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW. 2,2’-Thiodiethanol: A new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech. 2007; 70: 1–9. doi: 10.1002/jemt.20396 17131355

26. Aoyagi Y, Kawakami R, Osanai H, Hibi T, Nemoto T. A rapid optical clearing protocol using 2,2’-thiodiethanol for microscopic observation of fixed mouse brain. PLoS ONE. 2015; 10: e0116280. doi: 10.1371/journal.pone.0116280 25633541

27. Gibson SF, Lanni F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J Opt Soc Am A. 1991; 8: 1601–1613.

28. Landmann L. Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data sets more than filtering techniques. J Microsc. 2002; 208: 134. doi: 10.1046/j.1365-2818.2002.01068.x 12423263

29. Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, et al. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods. 2017; 115: 28–41. doi: 10.1016/j.ymeth.2016.12.015 28057586

30. Abramowitz M, Spring KR, Keller HE, Davidson MW. Basic principles of microscope objectives. BioTechniques. 2002; 33: 772–781. doi: 10.2144/02334bi01 12398185

31. Patwary N, Preza C. Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions. Biomed Opt Express. 2015; 6: 3826–3841. doi: 10.1364/BOE.6.003826 26504634

32. Kam Z, Kner P, Agard D, Sedat JW. Modelling the application of adaptive optics to wide-field microscope live imaging. J Microsc. 2007; 226: 33–42. doi: 10.1111/j.1365-2818.2007.01751.x 17381707

33. Tanabe A, Hibi T, Ipponjima S, Matsumoto K, Yokoyama M, Kurihara M, et al. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy. J Biomed Opt. 2015; 20: 101204. doi: 10.1117/1.JBO.20.10.101204 26244766

34. Marx V. Microscopy: Seeing through tissue. Nat Methods. 2014; 11: 1209–1214. doi: 10.1038/nmeth.3181 25423017

35. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994; 19: 780–782. doi: 10.1364/ol.19.000780 19844443

36. Bornfleth H, Saetzler K, Eils R, Cremer C. High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J Microsc. 1998; 189: 118–136.

37. Gustafsson MGL. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A. 2005; 102: 13081–13086. doi: 10.1073/pnas.0406877102 16141335

38. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006; 313: 1642–1645. doi: 10.1126/science.1127344 16902090

39. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006; 3: 793–795. doi: 10.1038/nmeth929 16896339

40. Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, et al. Nanotools for neuroscience and brain activity mapping. ACS Nano. 2013; 7: 1850–1866. doi: 10.1021/nn4012847 23514423

Článek vyšel v časopise


2020 Číslo 1