Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress

Autoři: Saida Haider aff001;  Laraib Liaquat aff001;  Saara Ahmad aff002;  Zehra Batool aff001;  Rafat Ali Siddiqui aff004;  Saiqa Tabassum aff001;  Sidrah Shahzad aff001;  Sahar Rafiq aff001;  Narjis Naz aff007
Působiště autorů: Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan aff001;  Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan aff002;  Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan aff003;  Nutrition Science and Food Chemistry Laboratory, Agricultural Research Station, Virginia State University, Petersburg, United States of America aff004;  Department of Biosciences, Shaheed Zuifiqar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan aff005;  Pakistan Navy Medical Training School and College, PNS Shifa, Karachi, Pakistan aff006;  Department of Genetics, University of Karachi, Karachi, Pakistan aff007
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227631


Currently prescribed medications for the treatment of Alzheimer’s disease (AD) that are based on acetylcholinesterase inhibition only offer symptomatic relief but do not provide protection against neurodegeneration. There appear to be an intense need for the development of therapeutic strategies that not only improve brain functions but also prevent neurodegeneration. The oxidative stress is one of the main causative factors of AD. Various antioxidants are being investigated to prevent neurodegeneration in AD. The objective of this study was to investigate the neuroprotective effects of naringenin (NAR) against AlCl3+D-gal induced AD-like symptoms in an animal model. Rats were orally pre-treated with NAR (50 mg/kg) for two weeks and then exposed to AlCl3+D-gal (150 mg/kg + 300 mg/kg) intraperitoneally for one week to develop AD-like symptoms. The standard drug, donepezil (DPZ) was used as a stimulator of cholinergic activity. Our results showed that NAR pre-treatment significantly protected AD-like behavioral disturbances in rats. In DPZ group, rats showed improved cognitive and cholinergic functions but the neuropsychiatric functions were not completely improved and showed marked histopathological alterations. However, NAR not only prevented AlCl3+D-gal induced AD-like symptoms but also significantly prevented neuropsychiatric dysfunctions in rats. Results of present study suggest that NAR may play a role in enhancing neuroprotective and cognition functions and it can potentially be considered as a neuroprotective compound for therapeutic management of AD in the future.

Klíčová slova:

Alzheimer's disease – Animal models – Antioxidants – Cognitive impairment – Hippocampus – Memory – Neurons – Rats


1. Cavallo MC, Fattore G. The economic and social burden of Alzheimer disease on families in the Lombardy region of Italy. Alzheimer Dis Assoc Disord. 1997; 11:184–90.

2. Gauthier S, Cummings J, Ballard C, Brodaty H, Grossberg G, Robert P, et al. Management of behavioral problems in Alzheimer's disease. Int Psychogeriatr. 2010; 22:346–72. doi: 10.1017/S1041610209991505 20096151

3. Wenk GL. Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry. 2003; 64:7–10.

4. Chonpathompikunlert P, Wattanathorn J, Muchimapura S. Piperine. The main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol. 2010; 48:798–802. doi: 10.1016/j.fct.2009.12.009 20034530

5. Lakshmi BV, Sudhakar M, Prakash KS. Protective effect of selenium against aluminum chloride-induced Alzheimer’s disease: behavioral and biochemical alterations in rats. Biol Trace Elem Res. 2015; 165:67–74. doi: 10.1007/s12011-015-0229-3 25613582

6. Devi L, Diwakar L, Raju TR, Kutty BM. Selective neurodegeneration of hippocampus and entorhinal cortex correlates with spatial learning impairments in rats with bilateral ibotenate lesions of ventral subiculum. Brain Res. 2003; 960:9–15. doi: 10.1016/s0006-8993(02)03699-5 12505652

7. Harman D. Aging and oxidative stress. J Intern Fed Clin Chem. 1998; 10:24–7.

8. Thenmozhi AJ, Raja TR, Janakiraman U, Manivasagam T. Neuroprotective. Effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem Res. 2015; 40:767–76. doi: 10.1007/s11064-015-1525-1 25630717

9. Huang WJ, Zhang XI, Chen WW. Role of oxidative stress in Alzheimer's disease. Biomed Rep. 2016; 4:519–22. doi: 10.3892/br.2016.630 27123241

10. Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007; 2:219–36. 18044138

11. Ziegler DV, Wiley CD, Velarde MC. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging cell. 2015: 14;1–7. doi: 10.1111/acel.12287 25399755

12. Uddin S, Ahmad S, Antioxidants protection against cancer and other human diseases. Compr Ther. 1995; 21:41–5. 7697981

13. Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev. 2012; 6:81–90. doi: 10.4103/0973-7847.99898 23055633

14. Ghofrani S, Joghataei MT, Mohseni S, Baluchnejadmojarad T, Bagheri M, Khamse S, et al. Naringenin improves learning and memory in an Alzheimer's disease rat model: insights into the underlying mechanisms. Eur J Pharmacol. 2015; 764:195–201. doi: 10.1016/j.ejphar.2015.07.001 26148826

15. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic Res. 2005; 39:1119–25. doi: 10.1080/10715760500233113 16298737

16. Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr. 2005; 45:287–306. doi: 10.1080/1040869059096 16047496

17. Keli SO, Hertog MG, Feskens EJ, Kromhout D. Dietary flavonoids, antioxidant vitamins. Arch Intern Med. 1996; 156:637–42. 8629875

18. Cook NC, Samman S. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem. 1996; 7:66–76.

19. Williams RJ, Spencer JP. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med. 2012; 52:35–45. doi: 10.1016/j.freeradbiomed.2011.09.010 21982844

20. Spencer JP. Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance: Symposium on ‘Diet and mental health’. Proc Nutr Soc. 2008; 67:238–52. doi: 10.1017/S0029665108007088 18412998

21. Mira L, Tereza Fernandez M, Santos M, Rocha R, Helena Florêncio M, Jennings KR. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res. 2002; 36:1199–208. doi: 10.1080/1071576021000016463 12592672

22. Ammar RB, Bhouri W, Sghaier MB, Boubaker J, Skandrani I, Neffati A, et al. Antioxidant and free radical-scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L. (Rhamnaceae): A structure-activity relationship study, Food Chem. 2009; 116:258–64.

23. Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M. Quantitation of flavonoid constituents in Citrus fruits. J Agric Food Chem. 1999; 47:3565–71. doi: 10.1021/jf990153+ 10552686

24. Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr. 2008; 3:115–26. doi: 10.1007/s12263-008-0091-4 18937002

25. Rahigude A, Bhutada P, Kaulaskar S, Aswar M, Otari K. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neurosci. 2012; 226:62–72.

26. Miler M, Živanović J, Ajdžanović V, Oreščanin-Dušić Z, Milenković D, Konić-Ristić A, et al. Citrus flavanones naringenin and hesperetin improve antioxidant status and membrane lipid compositions in the liver of old-aged Wistar rats. Exp Gerontol. 2016; 84: 49–60. doi: 10.1016/j.exger.2016.08.014 27587005

27. Pan R, Qiu S, Lu DX, Dong J. Curcumin improves learning and memory ability and its neuroprotective mechanism in mice. Chin Med J. 2008; 121:832–9. 18701050

28. Haider S, Liaquat L, Shahzad S, Sadir S, Madiha S, Batool Z, et al. A high dose of short term exogenous D-galactose administration in young male rats produces symptoms simulating the natural aging process. Life Sci. 2015; 124:110–9. doi: 10.1016/j.lfs.2015.01.016 25637686

29. Liaquat L, Ahmad S, Sadir S, Batool Z, Khaliq S, Tabassum S, et al. Development of AD like symptoms following co-administration of AlCl3 and D-gal in rats: A neurochemical, biochemical and behavioural study. Pak J Pharm Sci. 2017; 30:647–53. 28650335

30. Liaquat L, Batool Z, Sadir S, Rafiq S, Perveen T, Haider S. Naringenin-induced enhanced antioxidant defence system meliorates cholinergic neurotransmission and consolidates memory in male rats. Life Sci. 2018; 194:213–23. doi: 10.1016/j.lfs.2017.12.034 29287782

31. Liaquat L, Haider S, Batool Z, Suleman A, Gul N, Jabbar S. Memory enhancement and reduction in lipid peroxidation by dietary antioxidants in brain. Pak J Biochem Mol Biol 2016; 49:53–9.

32. Liaquat L, Sadir S, Batool Z, Tabassum S, Shahzad S, Afzal A, et al. Acute aluminum chloride toxicity revisited: Study on DNA damage and histopathological, biochemical and neurochemical alterations in rat brain. Life Sci. 2019; 217:202–11. doi: 10.1016/j.lfs.2018.12.009 30528774

33. Haider S, Tabassum S, Perveen T. Scopolamine-induced greater alterations in neurochemical profile and increased oxidative stress demonstrated a better model of dementia: a comparative study. Brain Res Bull. 2016; 127:234–47. doi: 10.1016/j.brainresbull.2016.10.002 27725168

34. Filali M, Lalonde R. Age-related cognitive decline and nesting behavior in an APPswe/PS1 bigenic model of Alzheimer's disease. Brain Res. 2009; 1292:93–9. doi: 10.1016/j.brainres.2009.07.066 19643098

35. Wu B, Iwakiri R, Tsunada S, Utsumi H, Kojima M, Fujise T, et al. iNOS enhances rat intestinal apoptosis after ischemia-reperfusion. Free Radic Biol Med. 2002; 33:649–58. doi: 10.1016/s0891-5849(02)00917-6 12208351

36. Batool Z, Agha F, Tabassum S, Batool TS, Siddiqui RA, Haider S. Prevention of cadmium‑induced neurotoxicity in rats by essential nutrients present in nuts. Acta Neurobiol Exp. 2019; 79:169–83.

37. Simms D, Cizdziel PE, Chomczynski P. TRIzolTM: a new reagent for optimal single-step isolation of RNA. Focus. 1993;15:99–102.

38. Tsuno N. Donepezil in the treatment of patients with Alzheimer’s disease. Expert Rev Neurother. 2009; 9:591–8. doi: 10.1586/ern.09.23 19402770

39. Terry AV, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther. 2003; 306:821–7. doi: 10.1124/jpet.102.041616 12805474

40. Markesbery WR. Oxidative stress hypothesis in Alzheimer's disease, Free Radic Biol Med. 1997; 23:134–47. doi: 10.1016/s0891-5849(96)00629-6 9165306

41. Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015; 24:325–40. doi: 10.5607/en.2015.24.4.325 26713080

42. Qu M, Jiang Z, Liao Y, Song Z, Nan X. Lycopene prevents amyloid [beta]-induced mitochondrial oxidative stress and dysfunctions in cultured rat cortical neurons. Neurochem Res. 2016; 41:1354–64. doi: 10.1007/s11064-016-1837-9 26816095

43. Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol. 2006; 545:51–64. doi: 10.1016/j.ejphar.2006.06.025 16904103

44. Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci. 2005; 827:65–75. doi: 10.1016/j.jchromb.2005.04.023 16183338

45. Grady CL, Furey ML, Pietrini P, Horwitz B, Rapoport SI. Altered brain functional connectivity and impaired short-term memory in Alzheimer's disease. Brain. 2001; 124:739–56. doi: 10.1093/brain/124.4.739 11287374

46. Xiao F, Li XG, Zhang XY, Hou JD, Lin LF, Gao Q, et al. Combined administration of D-galactose and aluminium induces Alzheimer like lesions in brain. Neurosci Bull. 2011; 27:143–55. doi: 10.1007/s12264-011-1028-2 21614097

47. Taverni JP, Seliger G, Lichtman SW. Donepezil mediated memory improvement in traumatic brain injury during post acute rehabilitation. Brain Inj. 1998; 12:77–80. doi: 10.1080/026990598122881 9483340

48. Chuah LY, Chong DL, Chen AK, Rekshan W, Tan JC, Zheng H, et al. Donepezil improves episodic memory in young individuals vulnerable to the effects of sleep deprivation. Sleep. 2009; 32:999–1010. doi: 10.1093/sleep/32.8.999 19725251

49. Goulart BK, De Lima MNM, De Farias CB, Reolon GK, Almeida VR, Quevedo J, et al. Ketamine impairs recognition memory consolidation and prevents learning-induced increase in hippocampal brain-derived neurotrophic factor levels. Neuroscience. 2010; 167:969–73. doi: 10.1016/j.neuroscience.2010.03.032 20338225

50. Viggiano MP, Galli G, Righi S, Brancati C, Gori G, Cincotta M. Visual recognition memory in Alzheimer's disease: repetition-lag effects. Exp Aging Res. 2008; 34:267–81. doi: 10.1080/03610730802070241 18568983

51. Klein-Koerkamp Y, Heckemann RA, Ramdeen KT, Moreaud O, Keignart S, Krainik A, et al. Alzheimer's Disease Neuroimaging Initiative. Amygdalar atrophy in early Alzheimer’s disease. Curr Alzheimer Res. 2014; 11:239–52. doi: 10.2174/1567205011666140131123653 24484275

52. Taïr K, Kharoubi O, Taïr OA, Hellal N, Benyettou I, Aoues A. Aluminium-induced acute neurotoxicity in rats: treatment with aqueous extract of Arthrophytum (Hammada scoparia). J Acute Dis. 2016; 5:470–82.

53. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature. 2000; 408:982–5. doi: 10.1038/35050116 11140686

54. Chung JA, Cummings JL. Neurobehavioral and neuropsychiatric symptoms in Alzheimer's disease: characteristics and treatment. Neurol Clin. 2000; 18:829–46. doi: 10.1016/s0733-8619(05)70228-0 11072263

55. Orzechowska A, Zajączkowska M, Talarowska M, Gałecki P. Depression and ways of coping with stress: A preliminary study. Med Sci Monit Res. 2013; 19:1050–6.

56. Modrego PJ. Depression in Alzheimer's disease. Pathophysiology, diagnosis, and treatment. J Alzheimer's Dis. 2010; 21;1077–87.

57. Jain A, Dwivedi N, Bhargava R, Flora SJ. Silymarin and naringenin protects nicotine induced oxidative stress in young rats. Oxid Antioxid Med Sci. 2012; 1:41–9.

58. Naidu RN, Shankar B, Dsouza U. Effect of long term administration of aluminium chloride on oxidative stress and acetylcholinesterase activity in rat brains. Int J Pharm Bio Sci. 2013; 3:616–22.

59. Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, et al. Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int. 2012; 61:1081–93. doi: 10.1016/j.neuint.2012.07.025 22898296

60. Bhattacharya A, Ghosal S, Bhattacharya SK. Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol. 2001; 74:1–6. doi: 10.1016/s0378-8741(00)00309-3 11137343

61. Blake DR, Allen RE, Lunee J. Free radicals in biological systems: a review oriented to the inflammatory process. Br Med Bull. 1987; 43:371–85. doi: 10.1093/oxfordjournals.bmb.a072188 3319034

62. Renugadevi J, Prabu SM. Cadmium-induced hepatotoxicity in rats and the protective effect of Naringenin. Exp Toxicol Pathol. 2010; 62:171–81. doi: 10.1016/j.etp.2009.03.010 19409769

63. Zaki HF, Abd-El-Fattah MA, Attia AS. Naringenin protects against scopolamine-induced dementia in rats. Bull Fac Pharm Cairo Univ. 2014; 52:15–25.

64. Terry AV Jr. In: Levin ED, Buccafusco JJ, editors. Source Animal Models of Cognitive Impairment. Boca Raton (FL): CRC Press/Taylor & Francis; 2006. p. 145–54.

65. Umukoro S, Kalejaye HA, Ben-Azu B, Ajayi AM. Naringenin attenuates behavioral derangements induced by social defeat stress in mice via inhibition of acetylcholinesterase activity, oxidative stress and release of pro-inflammatory cytokines. Biomed Pharmacother. 2018; 105:714–23. doi: 10.1016/j.biopha.2018.06.016 29906750

66. Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, et al. Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathol. 1995; 89:35–41. doi: 10.1007/bf00294257 7709729

67. Stadelmann C, Brück W, Bancher C, Jellinger K, Lassmann H. Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J Neuropathol Exp Neurol. 1998; 57:456–64. doi: 10.1097/00005072-199805000-00009 9596416

68. Su JH, Deng G, Cotman CW. Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer's disease brain. Brain Res. 1997; 774:193–9. doi: 10.1016/s0006-8993(97)81703-9 9452208

69. Bagchi D, Garg A, Krohn RL, Bagchi M, Bagchi DJ, Balmoori J, et al. Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. Gen Pharmacol. 1998; 30:771–6. doi: 10.1016/s0306-3623(97)00332-7 9559333

70. Gao K, Henning SM, Niu Y, Youssefian AA, Seeram NP, Xu A, et al. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J Nutr Biochem. 2006; 17:89–95. doi: 10.1016/j.jnutbio.2005.05.009 16111881

71. Oršolić N, Gajski G, Garaj-Vrhovac V, Đikić D, Prskalo ZS, Sirovina D. DNA-protective effects of quercetin or naringenin in alloxan-induced diabetic mice. Eur J Pharmacol. 2011; 656:110–8. doi: 10.1016/j.ejphar.2011.01.021 21277296

72. Gonçalves PP, Silva VS. Does neurotransmission impairment accompany aluminium neurotoxicity?, J Inorg Biochem. 2007; 101:1291–338. doi: 10.1016/j.jinorgbio.2007.06.002 17675244

73. Carolyn Cidis Meltzer MD, Smith G, DeKosky ST, Pollock BG, Mathis CA, Moore RY, et al. Serotonin in aging, late-life depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacol. 1998; 18: 407–30.

74. Garcia-Alloza M, Gil-Bea FJ, Diez-Ariza M, Chen CH, Francis PT, Lasheras B, et al. Cholinergic–serotonergic imbalance contributes to cognitive and behavioral symptoms in Alzheimer’s disease. Neuropsychol. 2005; 43:442–9.

75. Jacobsen JP, Medvedev IO, Caron MG. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Phil Trans R Soc B Biol Sci. 2012; 367:2444–59.

76. Zhang G, Stackman RW Jr. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 2015; 6:225. doi: 10.3389/fphar.2015.00225 26500553

77. Tsunoda M, Sharma RP. Altered dopamine turnover in murine hypothalamus after low-dose continuous oral administration of aluminum. J Trace Elem Med Biol. 1999; 13:224–31. doi: 10.1016/S0946-672X(99)80040-6 10707345

78. Exley C, Vickers T. Elevated brain aluminium and early onset Alzheimer’s disease in an individual occupationally exposed to aluminium: a case report. J Med Case Rep. 2014; 8:41. doi: 10.1186/1752-1947-8-41 24513181

79. Martorana A, Koch G. Is dopamine involved in Alzheimer's disease?, Front Aging Neurosci. 2014; 6:252. doi: 10.3389/fnagi.2014.00252 25309431

80. Burns JM, Galvin JE, Roe CM, Morris JC, McKeel DW. The pathology of the substantia nigra in Alzheimer disease with extrapyramidal signs. Neurology. 2005; 64:1397–403. doi: 10.1212/01.WNL.0000158423.05224.7F 15851730

81. Hussain AM, Mitra AK. Effect of aging on tryptophan hydroxylase in rat brain: implications on serotonin level. Drug Metab Dispos. 2000; 28:1038–42. 10950846

82. Zhang Y, Herman B. Ageing and apoptosis. Mech Ageing Dev. 2002; 123:245–60. doi: 10.1016/s0047-6374(01)00349-9 11744038

83. Cui XU, Zuo P, Zhang Q, Li X, Hu Y, Long J, et al. Chronic systemic D‐galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R‐α‐lipoic acid. J Neurosci Res. 2006; 83:1584–90. doi: 10.1002/jnr.20845 16555301

84. Walton JR. Aluminum in hippocampal neurons from humans with Alzheimer's disease. Neurotoxicol. 2006; 27:385–94.

85. Miyata T, Takizawa S, Van Ypersele de Strihou C. Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets. Am J Physiol Cell Physiol. 2010; 300:226–31.

86. Çoban J, Doğan-Ekici I, Aydın AF, Betül-Kalaz E, Doğru-Abbasoğlu S, et al. Blueberry treatment decreased D-galactose-induced oxidative stress and brain damage in rats. Metab Brain Dis. 2015; 30:793–802. doi: 10.1007/s11011-014-9643-z 25511550

87. Sumathi T, Shobana C, Thangarajeswari M, Usha R. Protective effect of L-theanine against aluminium induced neurotoxicity in cerebral cortex, hippocampus and cerebellum of rat brain–histopathological, and biochemical approach. Drug Chem Toxicol. 2015; 38:22–31. doi: 10.3109/01480545.2014.900068 24654859

88. Chen P, Chen F, Zhou B. Antioxidative, anti-inflammatory and anti-apoptotic effects of ellagic acid in liver and brain of rats treated by D-galactose. Sci Rep. 2018; 8:1465. doi: 10.1038/s41598-018-19732-0 29362375

89. Kenawy S, Hegazy R, Hassan A, El-Shenawy S, Gomaa N, Zaki H, et al. Involvement of insulin resistance in D-galactose-induced age-related dementia in rats: Protective role of metformin and saxagliptin. PloS one. 2017;12:e0183565. doi: 10.1371/journal.pone.0183565 28832656

Článek vyšel v časopise


2020 Číslo 1