Lesion of striatal patches disrupts habitual behaviors and increases behavioral variability

Autoři: Jacob A. Nadel aff001;  Sean S. Pawelko aff001;  Della Copes-Finke aff001;  Maya Neidhart aff001;  Christopher D. Howard aff001
Působiště autorů: Neuroscience Department, Oberlin College, Oberlin, OH, United States of America aff001;  Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, Maryland, United States of America aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224715


Habits are automated behaviors that are insensitive to changes in behavioral outcomes. Habitual responding is thought to be mediated by the striatum, with medial striatum guiding goal-directed action and lateral striatum promoting habits. However, interspersed throughout the striatum are neurochemically differing subcompartments known as patches, which are characterized by distinct molecular profiles relative to the surrounding matrix tissue. These structures have been thoroughly characterized neurochemically and anatomically, but little is known regarding their function. Patches have been shown to be selectively activated during inflexible motor stereotypies elicited by stimulants, suggesting that patches may subserve habitual behaviors. To explore this possibility, we utilized transgenic mice (Sepw1 NP67) preferentially expressing Cre recombinase in striatal patch neurons to target these neurons for ablation with a virus driving Cre-dependent expression of caspase 3. Mice were then trained to press a lever for sucrose rewards on a variable interval schedule to elicit habitual responding. Mice were not impaired on the acquisition of this task, but lesioning striatal patches disrupted behavioral stability across training, and lesioned mice utilized a more goal-directed behavioral strategy during training. Similarly, when mice were forced to omit responses to receive sucrose rewards, habitual responding was impaired in lesioned mice. To rule out effects of lesion on motor behaviors, mice were then tested for impairments in motor learning on a rotarod and locomotion in an open field. We found that patch lesions partially impaired initial performance on the rotarod without modifying locomotor behaviors in open field. This work indicates that patches promote behavioral stability and habitual responding, adding to a growing literature implicating striatal patches in stimulus-response behaviors.

Klíčová slova:

Animal behavior – Animal performance – Dopamine – Habits – Learning – Mice – Neostriatum – Neurons


1. Dolan RJ, Dayan P. Goals and Habits in the Brain. Neuron. 2013;80: 312–325. doi: 10.1016/j.neuron.2013.09.007 24139036

2. Gillan CM, Papmeyer M, Morein-Zamir S, Sahakian BJ, Fineberg NA, Robbins TW, et al. Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am J Psychiatry. 2011;168: 718–726. doi: 10.1176/appi.ajp.2011.10071062 21572165

3. Gillan CM, Robbins TW. Goal-directed learning and obsessive-compulsive disorder. Philos Trans R Soc B Biol Sci. 2014;369: 20130475–20130475. doi: 10.1098/rstb.2013.0475 25267818

4. Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry. 2015;20: 345–352. doi: 10.1038/mp.2014.44 24840709

5. Nelson A, Killcross S. Amphetamine exposure enhances habit formation. J Neurosci Off J Soc Neurosci. 2006;26: 3805–3812. doi: 10.1523/JNEUROSCI.4305-05.2006 16597734

6. Sjoerds Z, Luigjes J, van den Brink W, Denys D, Yücel M. The Role of Habits and Motivation in Human Drug Addiction: A Reflection. Front Psychiatry. 2014;5. doi: 10.3389/fpsyt.2014.00008 24523702

7. Smith RJ, Laiks LS. Behavioral and neural mechanisms underlying habitual and compulsive drug seeking. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87: 11–21. doi: 10.1016/j.pnpbp.2017.09.003 28887182

8. Delorme C, Salvador A, Valabrègue R, Roze E, Palminteri S, Vidailhet M, et al. Enhanced habit formation in Gilles de la Tourette syndrome. Brain. 2016;139: 605–615. doi: 10.1093/brain/awv307 26490329

9. Dickinson A, Nicholas DJ, Adams CD. The Effect of the Instrumental Training Contingency on Susceptibility to Reinforcer Devaluation. Q J Exp Psychol Sect B. 1983;35: 35–51. doi: 10.1080/14640748308400912

10. Adams CD, Dickinson A. Instrumental Responding following Reinforcer Devaluation. Q J Exp Psychol Sect B. 1981;33: 109–121. doi: 10.1080/14640748108400816

11. Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7: 464–476. doi: 10.1038/nrn1919 16715055

12. Packard MG, Knowlton BJ. Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci. 2002;25: 563–593. doi: 10.1146/annurev.neuro.25.112701.142937 12052921

13. Gremel CM, Costa RM. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun. 2013;4. doi: 10.1038/ncomms3264 23921250

14. Gremel CM, Chancey JH, Atwood BK, Luo G, Neve R, Ramakrishnan C, et al. Endocannabinoid Modulation of Orbitostriatal Circuits Gates Habit Formation. Neuron. 2016;90: 1312–1324. doi: 10.1016/j.neuron.2016.04.043 27238866

15. Izquierdo A, Suda RK, Murray EA. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J Neurosci Off J Soc Neurosci. 2004;24: 7540–7548. doi: 10.1523/JNEUROSCI.1921-04.2004 15329401

16. Yin HH, Ostlund SB, Knowlton BJ, Balleine BW. The role of the dorsomedial striatum in instrumental conditioning: Striatum and instrumental conditioning. Eur J Neurosci. 2005;22: 513–523. doi: 10.1111/j.1460-9568.2005.04218.x 16045504

17. Yin HH, Knowlton BJ, Balleine BW. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci. 2004;19: 181–189. doi: 10.1111/j.1460-9568.2004.03095.x 14750976

18. McNamee D, Liljeholm M, Zika O, O’Doherty JP. Characterizing the associative content of brain structures involved in habitual and goal-directed actions in humans: a multivariate FMRI study. J Neurosci Off J Soc Neurosci. 2015;35: 3764–3771. doi: 10.1523/JNEUROSCI.4677-14.2015 25740507

19. Tricomi E, Balleine BW, O’Doherty JP. A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci. 2009;29: 2225–2232. doi: 10.1111/j.1460-9568.2009.06796.x 19490086

20. Malvaez M, Greenfield VY, Matheos DP, Angelillis NA, Murphy MD, Kennedy PJ, et al. Habits Are Negatively Regulated by Histone Deacetylase 3 in the Dorsal Striatum. Biol Psychiatry. 2018. doi: 10.1016/j.biopsych.2018.01.025 29571524

21. Crittenden JR, Graybiel AM. Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments. Front Neuroanat. 2011;5. doi: 10.3389/fnana.2011.00059 21941467

22. Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 1992;15: 133–139. doi: 10.1016/0166-2236(92)90355-c 1374971

23. Kuhar MJ, Pert CB, Snyder SH. Regional distribution of opiate receptor binding in monkey and human brain. Nature. 1973;245: 447–450. doi: 10.1038/245447a0 4127185

24. Graybiel AM, Ragsdale CW. Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A. 1978;75: 5723–5726. doi: 10.1073/pnas.75.11.5723 103101

25. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons. Neuron. 2012;74: 858–873. doi: 10.1016/j.neuron.2012.03.017 22681690

26. Gerfen CR. The neostriatal mosaic. I. compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol. 1985;236: 454–476. doi: 10.1002/cne.902360404 2414339

27. Fujiyama F, Sohn J, Nakano T, Furuta T, Nakamura KC, Matsuda W, et al. Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci. 2011;33: 668–677. doi: 10.1111/j.1460-9568.2010.07564.x 21314848

28. Smith JB, Klug JR, Ross DL, Howard CD, Hollon NG, Ko VI, et al. Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch and Matrix Compartments. Neuron. 2016;91: 1069–1084. doi: 10.1016/j.neuron.2016.07.046 27568516

29. Canales JJ, Graybiel AM. A measure of striatal function predicts motor stereotypy. Nat Neurosci. 2000;3: 377–383. doi: 10.1038/73949 10725928

30. Canales J. Stimulant-induced adaptations in neostriatal matrix and striosome systems: Transiting from instrumental responding to habitual behavior in drug addiction. Neurobiol Learn Mem. 2005;83: 93–103. doi: 10.1016/j.nlm.2004.10.006 15721792

31. Murray RC, Gilbert YE, Logan AS, Hebbard JC, Horner KA. Striatal patch compartment lesions alter methamphetamine-induced behavior and immediate early gene expression in the striatum, substantia nigra and frontal cortex. Brain Struct Funct. 2014;219: 1213–1229. doi: 10.1007/s00429-013-0559-x 23625147

32. Murray RC, Logan MC, Horner KA. Striatal patch compartment lesions reduce stereotypy following repeated cocaine administration. Brain Res. 2015;1618: 286–298. doi: 10.1016/j.brainres.2015.06.012 26100338

33. Jenrette TA, Logue JB, Horner KA. Lesions of the Patch Compartment of Dorsolateral Striatum Disrupt Stimulus–Response Learning. Neuroscience. 2019;415: 161–172. doi: 10.1016/j.neuroscience.2019.07.033 31356898

34. Gerfen CR, Paletzki R, Heintz N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron. 2013;80: 1368–1383. doi: 10.1016/j.neuron.2013.10.016 24360541

35. Rossi MA, Yin HH. Methods for Studying Habitual Behavior in Mice. In: Crawley JN, Gerfen CR, Rogawski MA, Sibley DR, Skolnick P, Wray S, editors. Current Protocols in Neuroscience. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012. doi: 10.1002/0471142301.ns0829s60 22752897

36. Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M, Juntti SA, et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell. 2013;153: 896–909. doi: 10.1016/j.cell.2013.04.017 23663785

37. Davis J, Bitterman ME. Differential reinforcement of other behavior (DRO): a yoked-control comparison. J Exp Anal Behav. 1971;15: 237–241. doi: 10.1901/jeab.1971.15-237 16811508

38. Durieux PF, Schiffmann SN, de Kerchove d’Exaerde A. Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions: Dorsal striatum D1R- and D2R-neuron motor functions. EMBO J. 2012;31: 640–653. doi: 10.1038/emboj.2011.400 22068054

39. O’Hare JK, Ade KK, Sukharnikova T, Van Hooser SD, Palmeri ML, Yin HH, et al. Pathway-Specific Striatal Substrates for Habitual Behavior. Neuron. 2016;89: 472–479. doi: 10.1016/j.neuron.2015.12.032 26804995

40. Dickinson A. Actions and Habits: The Development of Behavioural Autonomy. Philos Trans R Soc B Biol Sci. 1985;308: 67–78. doi: 10.1098/rstb.1985.0010

41. Yu C, Gupta J, Chen J-F, Yin HH. Genetic deletion of A2A adenosine receptors in the striatum selectively impairs habit formation. J Neurosci Off J Soc Neurosci. 2009;29: 15100–15103. doi: 10.1523/JNEUROSCI.4215-09.2009 19955361

42. Garr E, Bushra B, Tu N, Delamater AR. Goal-directed control on interval schedules does not depend on the action-outcome correlation. J Exp Psychol Anim Learn Cogn. 2019. doi: 10.1037/xan0000229 31621353

43. Li Y, Pan X, He Y, Ruan Y, Huang L, Zhou Y, et al. Pharmacological Blockade of Adenosine A2A but Not A1 Receptors Enhances Goal-Directed Valuation in Satiety-Based Instrumental Behavior. Front Pharmacol. 2018;9. doi: 10.3389/fphar.2018.00393 29740319

44. Bloem B, Huda R, Sur M, Graybiel AM. Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses. eLife. 2017;6. doi: 10.7554/eLife.32353 29251596

45. Yoshizawa T, Ito M, Doya K. Reward-Predictive Neural Activities in Striatal Striosome Compartments. eneuro. 2018;5: ENEURO.0367–17.2018. doi: 10.1523/ENEURO.0367-17.2018 29430520

46. White NM, Hiroi N. Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proc Natl Acad Sci U S A. 1998;95: 6486–6491. doi: 10.1073/pnas.95.11.6486 9600993

47. Faust T. Influence of the Neostriatal Patch System on the Prediction-Based Coding of Midbrain Dopaminergic Neurons. PhD, Rutgers University. 2017.

48. Ikeda H, Koshikawa N, Cools AR. Accumbal core: essential link in feed-forward spiraling striato-nigro-striatal in series connected loop. Neuroscience. 2013;252: 60–67. doi: 10.1016/j.neuroscience.2013.07.066 23933312

49. Friedman A, Homma D, Gibb LG, Amemori K, Rubin SJ, Hood AS, et al. A Corticostriatal Path Targeting Striosomes Controls Decision-Making under Conflict. Cell. 2015;161: 1320–1333. doi: 10.1016/j.cell.2015.04.049 26027737

50. Friedman A, Homma D, Bloem B, Gibb LG, Amemori K, Hu D, et al. Chronic Stress Alters Striosome-Circuit Dynamics, Leading to Aberrant Decision-Making. Cell. 2017;171: 1191–1205.e28. doi: 10.1016/j.cell.2017.10.017 29149606

51. Willuhn I, Burgeno LM, Everitt BJ, Phillips PEM. Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc Natl Acad Sci. 2012;109: 20703–20708. doi: 10.1073/pnas.1213460109 23184975

52. Gerdeman GL, Ronesi J, Lovinger DM. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci. 2002;5: 446–451. doi: 10.1038/nn832 11976704

53. Atwood BK, Lovinger DM, Mathur BN. Presynaptic long-term depression mediated by Gi/o-coupled receptors. Trends Neurosci. 2014;37: 663–673. doi: 10.1016/j.tins.2014.07.010 25160683

54. Davis MI, Crittenden JR, Feng AY, Kupferschmidt DA, Naydenov A, Stella N, et al. The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra. Lee J, editor. PLOS ONE. 2018;13: e0191436. doi: 10.1371/journal.pone.0191436 29466446

55. Torregrossa MM, Quinn JJ, Taylor JR. Impulsivity, compulsivity, and habit: the role of orbitofrontal cortex revisited. Biol Psychiatry. 2008;63: 253–255. doi: 10.1016/j.biopsych.2007.11.014 18194683

56. Schoenbaum G, Saddoris MP, Stalnaker TA. Reconciling the Roles of Orbitofrontal Cortex in Reversal Learning and the Encoding of Outcome Expectancies. Ann N Y Acad Sci. 2007;1121: 320–335. doi: 10.1196/annals.1401.001 17698988

57. Burguiere E, Monteiro P, Feng G, Graybiel AM. Optogenetic Stimulation of Lateral Orbitofronto-Striatal Pathway Suppresses Compulsive Behaviors. Science. 2013;340: 1243–1246. doi: 10.1126/science.1232380 23744950

58. Faure A, Haberland U, Condé F, El Massioui N. Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J Neurosci Off J Soc Neurosci. 2005;25: 2771–2780. doi: 10.1523/JNEUROSCI.3894-04.2005 15772337

59. Okada K, Nishizawa K, Fukabori R, Kai N, Shiota A, Ueda M, et al. Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons. Nat Commun. 2014;5: 3778. doi: 10.1038/ncomms4778 24797209

60. Desban M, Kemel ML, Glowinski J, Gauchy C. Spatial organization of patch and matrix compartments in the rat striatum. Neuroscience. 1993;57: 661–671. doi: 10.1016/0306-4522(93)90013-6 8309529

61. Johnston JG, Gerfen CR, Haber SN, van der Kooy D. Mechanisms of striatal pattern formation: conservation of mammalian compartmentalization. Brain Res Dev Brain Res. 1990;57: 93–102. doi: 10.1016/0165-3806(90)90189-6 1965303

62. Morigaki R, Goto S. Putaminal Mosaic Visualized by Tyrosine Hydroxylase Immunohistochemistry in the Human Neostriatum. Front Neuroanat. 2016;10: 34. doi: 10.3389/fnana.2016.00034 27092059

63. McGregor MM, McKinsey GL, Girasole AE, Bair-Marshall CJ, Rubenstein JLR, Nelson AB. Functionally Distinct Connectivity of Developmentally Targeted Striosome Neurons. Cell Rep. 2019;29: 1419–1428.e5. doi: 10.1016/j.celrep.2019.09.076 31693884

64. Märtin A, Calvigioni D, Tzortzi O, Fuzik J, Wärnberg E, Meletis K. A Spatiomolecular Map of the Striatum. Preprint, biorxiv; 2019 May. doi: 10.1101/613596

65. Brainard MS, Doupe AJ. Translating Birdsong: Songbirds as a Model for Basic and Applied Medical Research. Annu Rev Neurosci. 2013;36: 489–517. doi: 10.1146/annurev-neuro-060909-152826 23750515

66. Kao MH, Doupe AJ, Brainard MS. Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature. 2005;433: 638–643. doi: 10.1038/nature03127 15703748

67. Garcia-Calero E, Bahamonde O, Martinez S. Differences in number and distribution of striatal calbindin medium spiny neurons between a vocal-learner (Melopsittacus undulatus) and a non-vocal learner bird (Colinus virginianus). Front Neuroanat. 2013;7: 46. doi: 10.3389/fnana.2013.00046 24391552

68. Charnov EL. Optimal foraging, the marginal value theorem. Theor Popul Biol. 1976;9: 129–136. doi: 10.1016/0040-5809(76)90040-x 1273796

69. Compton D. Behavior strategy learning in rat: effects of lesions of the dorsal striatum or dorsal hippocampus. Behav Processes. 2004;67: 335–342. doi: 10.1016/j.beproc.2004.06.002 15518984

70. Sakamoto T, Okaichi H. Use of Win-Stay and Win-Shift Strategies in Place and Cue Tasks by Medial Caudate Putamen (MCPu) Lesioned Rats. Neurobiol Learn Mem. 2001;76: 192–208. doi: 10.1006/nlme.2001.4006 11502149

71. McDonald RJ, White NM. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci. 1993;107: 3–22. doi: 10.1037//0735-7044.107.1.3 8447956

72. Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci. 2008;31: 359–387. doi: 10.1146/annurev.neuro.29.051605.112851 18558860

73. Lingawi NW, Dezfouli A, Balleine BW. The Psychological and Physiological Mechanisms of Habit Formation. In: Murphy RA, Honey RC, editors. The Wiley Handbook on the Cognitive Neuroscience of Learning. Chichester, UK: John Wiley & Sons, Ltd; 2016. pp. 409–441. doi: 10.1002/9781118650813.ch16

74. Dezfouli A, Lingawi NW, Balleine BW. Habits as action sequences: hierarchical action control and changes in outcome value. Philos Trans R Soc Lond B Biol Sci. 2014;369. doi: 10.1098/rstb.2013.0482 25267824

75. Matsumoto N, Hanakawa T, Maki S, Graybiel AM, Kimura M. Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. J Neurophysiol. 1999;82: 978–998. doi: 10.1152/jn.1999.82.2.978 10444692

76. Berridge KC, Whishaw IQ. Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp Brain Res. 1992;90: 275–290. doi: 10.1007/bf00227239 1397142

77. Van den Bercken JH, Cools AR. Evidence for a role of the caudate nucleus in the sequential organization of behavior. Behav Brain Res. 1982;4: 319–327. doi: 10.1016/0166-4328(82)90058-4 7073884

78. Yin HH. The sensorimotor striatum is necessary for serial order learning. J Neurosci Off J Soc Neurosci. 2010;30: 14719–14723. doi: 10.1523/JNEUROSCI.3989-10.2010 21048130

79. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2013;494: 238–242. doi: 10.1038/nature11846 23354054

80. Jin X, Tecuapetla F, Costa RM. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci. 2014;17: 423–430. doi: 10.1038/nn.3632 24464039

81. Geddes CE, Li H, Jin X. Optogenetic Editing Reveals the Hierarchical Organization of Learned Action Sequences. Cell. 2018;174: 32–43.e15. doi: 10.1016/j.cell.2018.06.012 29958111

82. Thorndike EL. Animal intelligence; experimental studies,. New York,: The Macmillan Company,; 1911. doi: 10.5962/bhl.title.55072

83. Thrailkill EA, Trask S, Vidal P, Alcalá JA, Bouton ME. Stimulus control of actions and habits: A role for reinforcer predictability and attention in the development of habitual behavior. J Exp Psychol Anim Learn Cogn. 2018;44: 370–384. doi: 10.1037/xan0000188 30407063

84. Lawhorn C, Smith DM, Brown LL. Partial ablation of mu-opioid receptor rich striosomes produces deficits on a motor-skill learning task. Neuroscience. 2009;163: 109–119. doi: 10.1016/j.neuroscience.2009.05.021 19463902

85. Ogura T, Ogata M, Akita H, Jitsuki S, Akiba L, Noda K, et al. Impaired acquisition of skilled behavior in rotarod task by moderate depletion of striatal dopamine in a pre-symptomatic stage model of Parkinson’s disease. Neurosci Res. 2005;51: 299–308. doi: 10.1016/j.neures.2004.12.006 15710494

86. Shumilov K, Real MÁ, Valderrama-Carvajal A, Rivera A. Selective ablation of striatal striosomes produces the deregulation of dopamine nigrostriatal pathway. Beeler JA, editor. PLOS ONE. 2018;13: e0203135. doi: 10.1371/journal.pone.0203135 30157254

87. Lopez-Huerta VG, Nakano Y, Bausenwein J, Jaidar O, Lazarus M, Cherassse Y, et al. The neostriatum: two entities, one structure? Brain Struct Funct. 2016;221: 1737–1749. doi: 10.1007/s00429-015-1000-4 25652680

88. Shivkumar S, Muralidharan V, Chakravarthy VS. A Biologically Plausible Architecture of the Striatum to Solve Context-Dependent Reinforcement Learning Tasks. Front Neural Circuits. 2017;11. doi: 10.3389/fncir.2017.00045 28680395

Článek vyšel v časopise


2020 Číslo 1