Long-term ecological research in southern Brazil grasslands: Effects of grazing exclusion and deferred grazing on plant and arthropod communities

Autoři: Pedro M. A. Ferreira aff001;  Bianca O. Andrade aff002;  Luciana R. Podgaiski aff004;  Amanda C. Dias aff005;  Valério D. Pillar aff004;  Gerhard E. Overbeck aff002;  Milton de S. Mendonça, Jr aff004;  Ilsi I. Boldrini aff002
Působiště autorů: Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil aff001;  Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil aff002;  Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil aff003;  Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil aff004;  Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska, United States of America aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227706


Grazing exclusion may lead to biodiversity loss and homogenization of naturally heterogeneous and species-rich grassland ecosystems, and these effects may cascade to higher trophic levels and ecosystem properties. Although grazing exclusion has been studied elsewhere, the consequences of alleviating the disturbance regime in grassland ecosystems remain unclear. In this paper, we present results of the first five years of an experiment in native grasslands of southern Brazil. Using a randomized block experimental design, we examined the effects of three grazing treatments on plant and arthropod communities: (i) deferred grazing (i.e., intermittent grazing), (ii) grazing exclusion and (iii) a control under traditional continuous grazing, which were applied to 70 x 70 m experimental plots, in six regionally distributed blocks. We evaluated plant community responses regarding taxonomic and functional diversity (life-forms) in separate spatial components: alpha (1 x 1 m subplots), beta, and gamma (70 x 70 m plots), as well as the cascading effects on arthropod high-taxa. By estimating effect sizes (treatments vs. control) by bootstrap resampling, both deferred grazing and grazing exclusion mostly increased vegetation height, plant biomass and standing dead biomass. The effect of grazing exclusion on plant taxonomic diversity was negative. Conversely, deferred grazing increased plant taxonomic diversity, but both treatments reduced plant functional diversity. Reduced grazing pressure in both treatments promoted the break of dominance by prostrate species, followed by fast homogenization of vegetation structure towards dominance of ligneous and erect species. These changes in the plant community led to increases in high-taxa richness and abundance of vegetation-dwelling arthropod groups under both treatments, but had no detectable effects on epigeic arthropods. Our results indicate that decision-making regarding the conservation of southern Brazil grasslands should include both intensive and alleviated levels of grazing management, but not complete grazing exclusion, to maximize conservation results when considering plant and arthropod communities.

Klíčová slova:

Arthropoda – Biodiversity – Ecosystems – Grasslands – Grazing – Plant taxonomy – Plants – Species diversity


1. Milchunas DG, Sala OE, Lauenroth W. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am Nat. University of Chicago Press; 1988;132: 87–106.

2. Knapp AK, Briggs JM, Hartnett DC, Collins SL. Grassland dynamicslong-term ecological research in tallgrass prairie. New York: Oxford University Press New York; 1998.

3. Bond WJ, Keeley JE. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol. Elsevier; 2005;20: 387–394.

4. Picket STA, White PS. The ecology of natural disturbance and patch dynamics. Orlando: Academic Press; 1985.

5. Grime JP. Plant strategies and vegetation processes. Plant Strateg Veg Process. John Wiley and Sons.; 1979;

6. Bond WJ, Woodward FI, Midgley GF. The global distribution of ecosystems in a world without fire. New Phytol. Wiley Online Library; 2005;165: 525–538.

7. Diaz S, Lavorel S, McIntyre SUE, Falczuk V, Casanoves F, Milchunas DG, et al. Plant trait responses to grazing–a global synthesis. Glob Chang Biol. Wiley Online Library; 2007;13: 313–341.

8. Grime JP. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci. Wiley Online Library; 2006;17: 255–260.

9. Frank DA, McNaughton SJ. Evidence for the promotion of aboveground grassland production by native large herbivores in Yellowstone National Park. Oecologia. Springer; 1993;96: 157–161.

10. Senft RL, Coughenour MB, Bailey DW, Rittenhouse LR, Sala OE, Swift DM. Large herbivore foraging and ecological hierarchies. Bioscience. JSTOR; 1987;37: 789–799.

11. McIntyre BS, Tongway D. Grassland structure in native pastures: links to soil surface condition. Ecol Manag Restor. Wiley Online Library; 2005;6: 43–50.

12. Adler P, Raff D, Lauenroth W. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia. Springer; 2001;128: 465–479.

13. McIvor JG, McIntyre S, Saeli I, Hodgkinson JJ. Patch dynamics in grazed subtropical native pastures in south‐east Queensland. Austral Ecol. Wiley Online Library; 2005;30: 445–464.

14. Fedrigo JK, Ataide PF, Filho JA, Oliveira LV, Jaurena M, Laca EA, et al. Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long‐term overgrazed Campos grassland. Restor Ecol. Wiley Online Library; 2018;26: 677–685.

15. Jaurena M, Lezama F, Cruz P. Perennial grasses traits as functional markers of grazing intensity in basaltic grasslands of Uruguay. Chil J Agric Res. Instituto de Investigaciones Agropecuarias, INIA; 2012;72: 541–549.

16. Guido A, Salengue E, Dresseno A. Effect of shrub encroachment on vegetation communities in Brazilian forest-grassland mosaics. Perspect Ecol Conserv. Elsevier; 2017;15: 52–55.

17. Overbeck GE, Müller SC, Pillar VD, Pfadenhauer J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J Veg Sci. 2005;16: 655–664. doi: 10.1111/j.1654-1103.2005.tb02408.x

18. Lezama F, Baeza S, Altesor A, Cesa A, Chaneton EJ, Paruelo JM. Variation of grazing-induced vegetation changes across a large-scale productivity gradient. J Veg Sci. Wiley Online Library; 2014;25: 8–21.

19. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett. Wiley Online Library; 2011;14: 19–28.

20. Soriano A. Río de la Plata grasslands. In: Coupland RT, editor. Ecosystems of the world 8A. Elsevier Ltd; 1992. pp. 367–407.

21. Dröse W, Podgaiski LR, Dias CF, Mendonça de Souza M Jr. Local and regional drivers of ant communities in forest-grassland ecotones in South Brazil: A taxonomic and phylogenetic approach. PLoS One. Public Library of Science; 2019;14: e0215310.

22. McIntyre S, Lavorel S, Tremont RM. Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol. JSTOR; 1995; 31–44.

23. Chapin FS III. Functional role of growth forms in ecosystem and global processes. In: Roy J, Ehleringer JR, Field CB, editors. Scaling physiological processes. San Diego: Academic Press; 1993. pp. 287–312.

24. van Klink R, van der Plas F, Van Noordwijk CGE, WallisDeVries MF, Olff H. Effects of large herbivores on grassland arthropod diversity. Biol Rev. Wiley Online Library; 2015;90: 347–366.

25. Joern A, Laws AN. Ecological mechanisms underlying arthropod species diversity in grasslands. Annu Rev Entomol. Annual Reviews; 2013;58: 19–36.

26. Zhu H, Wang D, Guo Q, Liu J, Wang L. Interactive effects of large herbivores and plant diversity on insect abundance in a meadow steppe in China. Agric Ecosyst Environ. Elsevier; 2015;212: 245–252.

27. Schowalter TD, Noriega JA, Tscharntke T. Insect effects on ecosystem services—Introduction. Basic Appl Ecol. Elsevier; 2018;26: 1–7.

28. Behling H, Pillar VD. Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philos Trans R Soc B Biol Sci. The Royal Society London; 2006;362: 243–251.

29. Behling H, Pillar VD. Vegetation and fire dynamics in southern Brazil during the late Quaternary and their implication for conservation and management of modern grassland ecosystems. Grasslands Ecol Manag Restoration New York Nov Sci Publ. 2008; 99–108.

30. MacFadden BJ. Origin and evolution of the grazing guild in New World terrestrial mammals. Trends Ecol Evol. Elsevier; 1997;12: 182–187.

31. MacFadden BJ. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quat Res. Elsevier; 2005;64: 113–124.

32. Pillar VDP, Müller SC, de S Castilhos ZM, Jacques AVÁ. Campos Sulinos: conservação e uso sustentável da biodiversidade. Brasília: Ministério do Meio Ambiente; 2009.

33. Overbeck G, Muller S, Fidelis A, Pfadenhauer J, Pillar V, Blanco C, et al. Brazil’s neglected biome: The South Brazilian Campos. Perspect Plant Ecol Evol Syst. 2007;9: 101–116. doi: 10.1016/j.ppees.2007.07.005

34. Andrade BO, Koch C, Boldrini II, Vélez-Martin E, Hasenack H, Hermann J-M, et al. Grassland degradation and restoration: a conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Brazilian J Nat Conserv. Elsevier; 2015;13: 95–104.

35. Rees M, Condit R, Crawley M, Pacala S, Tilman D. Long-term studies of vegetation dynamics. Science (80-). American Association for the Advancement of Science; 2001;293: 650–655.

36. Turner MG, Collins SL, Lugo AL, Magnuson JJ, Rupp TS, Swanson FJ. Disturbance dynamics and ecological response: the contribution of long-term ecological research. Bioscience. American Institute of Biological Sciences; 2003;53: 46–56.

37. Boldrini II, Eggers L. Vegetação campestre do sul do Brasil: dinâmica de espécies à exclusão do gado. Acta Bot Brasilica. SciELO Brasil; 1996;10: 37–50.

38. Altesor A, Oesterheld M, Leoni E, Lezama F, Rodríguez C. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecol. Springer; 2005;179: 83–91.

39. Rodríguez C, Leoni E, Lezama F, Altesor A. Temporal trends in species composition and plant traits in natural grasslands of Uruguay. J Veg Sci. Wiley Online Library; 2003;14: 433–440.

40. Williams PH, Gaston KJ. Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biol Conserv. Elsevier; 1994;67: 211–217.

41. Andrade BO, Bonilha CL, Ferreira PMA, Boldrini II, Overbeck GE. Highland Grasslands At the Southern Tip of the Atlantic Forest Biome: Management Options and Conservation Challenges. Oecologia Aust. 2016;20: 37–61. doi: 10.4257/oeco.2016.2002.04

42. Boldrini II. Campos do Rio Grande do Sul: caracterização fisionômica e problemática ocupacional. Boletim do Instituto de Biociências da Universidade Federal do Rio Grande do Sul; 1997.

43. Boldrini II, Eggers L, Mentz LA, Miotto STF, Matzenbacher NI, Longhi-Wagner HM, et al. Flora. Biodiversidade dos campos do planalto das araucárias. Brasília: Ministério do Meio Ambiente, Secretaria de Biodiversidade e Florestas; 2009. pp. 39–94.

44. Boavista L da R, Trindade JPP, Overbeck GE, Müller SC. Effects of grazing regimes on the temporal dynamics of grassland communities. Appl Veg Sci. Wiley Online Library; 2019;22: 326–335.

45. Sühs RB, Giehl ELH, Peroni N. Interaction of land management and araucaria trees in the maintenance of landscape diversity in the highlands of southern Brazil. PLoS One. Public Library of Science; 2018;13: e0206805.

46. Oliveira JM, Pillar VD. Vegetation dynamics on mosaics of Campos and Araucaria forest between 1974 and 1999 in Southern Brazil. Community Ecol. Akadémiai Kiadó; 2004;5: 197–202. doi: 10.1556/ComEc.5.2004.2.8

47. Tothill JC, Hargreaves JNG, Jones RM, McDonald CK. BOTANAL–a comprehensive sampling and computing procedure for estimating pasture yield and composition. 1. Field sampling. Trop Agron Tech Memo. 1992;

48. de Quadros FLF, Cruz P, Theau JP, Jouany C, Duru M, Carvalho PCF, et al. Uso de tipos funcionais de gramíneas como alternativa de diagnóstico da dinâmica e do manejo de campos naturais. Reun Anu da Soc Bras Zootec. 2006;43.

49. Soussana J-F. Os desafios da ciência das pastagens européias são relevantes para os Campos Sulinos. In: Pillar VD, Müller SC, Castilhos ZMS, Jacques AVA, editors. Campos sulinos: conservação e uso sustentável da biodiversidade. Brasília: Ministério do Meio Ambiente; 2009. pp. 331–344.

50. Londo G. The decimal scale for releves of permanent quadrats. Vegetatio. 1976;33: 61–64. doi: 10.1007/BF00055300

51. Pillar VD, Duarte L da S, Sosinski EE, Joner F. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J Veg Sci. Wiley Online Library; 2009;20: 334–348.

52. Efron B. Bootstrap methods: another look at the jackknife. Breakthroughs in statistics. Springer; 1992. pp. 569–593.

53. Efron B, Tibshirani RJ. An introduction to the bootstrap. Boca Raton: Chapman & Hall/CRC; 1993.

54. De Bello F, Lavergne S, Meynard CN, Lepš J, Thuiller W. The partitioning of diversity: showing Theseus a way out of the labyrinth. J Veg Sci. Wiley Online Library; 2010;21: 992–1000.

55. Podani J. Extending Gower’s general coefficient of similarity to ordinal characters. Taxon. JSTOR; 1999;48: 331–340. doi: 10.2307/1224438

56. Jost L. Partitioning diversity into independent alpha and beta components. Ecology. Wiley Online Library; 2007;88: 2427–2439.

57. Nakagawa S, Cuthill IC. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev. Wiley Online Library; 2007;82: 591–605.

58. Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Stat. Sage Publications Sage CA: Thousand Oaks, CA; 1981;6: 107–128.

59. Kirby KN, Gerlanc D. BootES: An R package for bootstrap confidence intervals on effect sizes. Behav Res Methods. Springer; 2013;45: 905–927.

60. Podgaiski LR, Cavalleri A, Ferrando CPR, Pillar VD, Mendonça M de S Jr. Prescribed patch burnings increase thrips species richness and body size in grassland communities. Insect Conserv Divers. Wiley Online Library; 2018;11: 204–212.

61. Tóthmérész B. Comparison of different methods for diversity ordering. J Veg Sci. Wiley Online Library; 1995;6: 283–290.

62. Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. Wiley Online Library; 1973;54: 427–432.

63. Honda EA, Durigan G. Woody encroachment and its consequences on hydrological processes in the savannah. Philos Trans R Soc B Biol Sci. The Royal Society; 2016;371: 20150313.

64. Morris MG. The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol Conserv. Elsevier; 2000;95: 129–142.

65. Berman TS, Ben-Ari M, Henkin Z, Inbar M. Immediate and long-term facilitative effects of cattle grazing on a polyphagous caterpillar. Agric Ecosyst Environ. Elsevier; 2018;261: 45–53.

66. Tilman D, Wedin D. Dynamics of nitrogen competition between successional grasses. Ecology. Wiley Online Library; 1991;72: 1038–1049.

67. Collins SL, Glenn SM, Gibson DJ. Experimental analysis of intermediate disturbance and initial floristic composition: decoupling cause and effect. Ecology. Wiley Online Library; 1995;76: 486–492.

68. Fernández G, Altesor A. Differential responses of C3 and C4 grasses to shrub effects in a sub-humid grassland of South America. J Veg Sci. Wiley Online Library; 2019;30: 203–211.

69. McNaughton SJ. Compensatory plant growth as a response to herbivory. Oikos. JSTOR; 1983; 329–336.

70. Ramula S, Paige KN, Lennartsson T, Tuomi J. Overcompensation: a 30-year perspective. Ecology. Wiley Online Library; 2019; e02667.

71. Pucheta E, Cabido M, Díaz S, Funes G. Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina. Acta Oecologica. Elsevier; 1998;19: 97–105.

72. Pucheta E, Vendramini F, Cabido M, Díaz S. Estructura y funcionamiento de un pastizal de montaña bajo pastoreo y su respuesta luego de su exclusión. Rev la Fac Agron La Plata. 1998;103: 77–92.

73. Cingolani AM, Cabido MR, Renison D, Solís Neffa V. Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. J Veg Sci. Wiley Online Library; 2003;14: 223–232.

74. Cruz P, De Quadros FLF, Theau JP, Frizzo A, Jouany C, Duru M, et al. Leaf traits as functional descriptors of the intensity of continuous grazing in native grasslands in the south of Brazil. Rangel Ecol Manag. Elsevier; 2010;63: 350–358.

75. Vaieretti MV, Cingolani AM, HARGUINDEGUY NP, Gurvich DE, Cabido M. Does decomposition of standard materials differ among grassland patches maintained by livestock? Austral Ecol. Wiley Online Library; 2010;35: 935–943.

76. Veldman JW, Buisson E, Durigan G, Fernandes GW, Le Stradic S, Mahy G, et al. Toward an old‐growth concept for grasslands, savannas, and woodlands. Front Ecol Environ. Wiley Online Library; 2015;13: 154–162.

77. Forgiarini C, Kollmann J, de Souza-Chies TT, Martins AC, Stiehl-Alves EM, Overbeck GE. Using population characteristics to evaluate the conservation status of endangered grassland species–The case of Herbertia zebrina in southern Brazil. Flora. Elsevier; 2017;234: 119–125.

78. Pillar VDP, Quadros F. Grassland-forest boundaries in Southern Brazil. Coenoses. Springer; 1997;12: 119–126.

79. Pausas JG, Lamont BB, Paula S, Appezzato‐da‐Glória B, Fidelis A. Unearthing belowground bud banks in fire‐prone ecosystems. New Phytol. Wiley Online Library; 2018;217: 1435–1448.

80. Fidelis A, Appezzato-da-Glória B, Pillar VD, Pfadenhauer J. Does disturbance affect bud bank size and belowground structures diversity in Brazilian subtropical grasslands?, Flora-Morphology Distrib Funct Ecol Plants. Elsevier; 2014;209: 110–116.

81. Thomas PA, Overbeck GE, Müller SC. Restoration of abandoned subtropical highland grasslands in Brazil: mowing produces fast effects, but hay transfer does not. Acta Bot Brasilica. SciELO Brasil; 2019;

82. Milchunas DG, Lauenroth WK. Quantitative effects of grazing on vegetation and soils over a global range of environments: Ecological Archives M063-001. Ecol Monogr. Wiley Online Library; 1993;63: 327–366.

83. Oesterheld M, Loreti J, Semmartin M, Paruelo JM. Grazing, fire, and climate effects on primary productivity of grasslands and savannas. Ecosyst world. 1999; 287–306.

84. Hillebrand H, Gruner DS, Borer ET, Bracken MES, Cleland EE, Elser JJ, et al. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc Natl Acad Sci. National Acad Sciences; 2007;104: 10904–10909.

85. Bakker ES, Olff H, Boekhoff M, Gleichman JM, Berendse F. Impact of herbivores on nitrogen cycling: contrasting effects of small and large species. Oecologia. Springer; 2004;138: 91–101.

86. Chaneton EJ, Facelli JM. Disturbance effects on plant community diversity: spatial scales and dominance hierarchies. Vegetatio. Springer; 1991;93: 143–155.

87. Frank DA. The interactive effects of grazing ungulates and aboveground production on grassland diversity. Oecologia. Springer; 2005;143: 629–634.

88. Díaz S, Noy‐Meir I, Cabido M. Can grazing response of herbaceous plants be predicted from simple vegetative traits? J Appl Ecol. Wiley Online Library; 2001;38: 497–508.

89. Evans DM, Villar N, Littlewood NA, Pakeman RJ, Evans SA, Dennis P, et al. The cascading impacts of livestock grazing in upland ecosystems: a 10‐year experiment. Ecosphere. Wiley Online Library; 2015;6: 1–15.

90. Simons NK, Gossner MM, Lewinsohn TM, Boch S, Lange M, Müller J, et al. Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS One. Public Library of Science; 2014;9: e107033.

91. Farrell KA, Harpole WS, Stein C, Suding KN, Borer ET. Grassland arthropods are controlled by direct and indirect interactions with cattle but are largely unaffected by plant provenance. PLoS One. Public Library of Science; 2015;10: e0129823.

92. Podgaiski LR, Joner F, Lavorel S, Moretti M, Ibanez S, Mendonça M de S Jr, et al. Spider trait assembly patterns and resilience under fire-induced vegetation change in South Brazilian grasslands. PLoS One. Public Library of Science; 2013;8: e60207.

93. Ebeling A, Meyer ST, Abbas M, Eisenhauer N, Hillebrand H, Lange M, et al. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS One. Public Library of Science; 2014;9: e106529.

94. Meyer ST, Heuss L, Feldhaar H, Weisser WW, Gossner MM. Land-use components, abundance of predatory arthropods, and vegetation height affect predation rates in grasslands. Agric Ecosyst Environ. Elsevier; 2019;270: 84–92.

95. Dennis P, Skartveit J, McCracken DI, Pakeman RJ, Beaton K, Kunaver A, et al. The effects of livestock grazing on foliar arthropods associated with bird diet in upland grasslands of Scotland. J Appl Ecol. Wiley Online Library; 2008;45: 279–287.

96. Bardgett RD, Wardle DA. Herbivore‐mediated linkages between aboveground and belowground communities. Ecology. Wiley Online Library; 2003;84: 2258–2268.

97. Overbeck GE, Vélez‐Martin E, Scarano FR, Lewinsohn TM, Fonseca CR, Meyer ST, et al. Conservation in Brazil needs to include non‐forest ecosystems. Divers Distrib. Wiley Online Library; 2015;21: 1455–1460.

98. Pillar VD, Vélez E. Extinção dos Campos Sulinos em unidades de conservação: um fenômeno natural ou um problema ético. Nat Conserv. 2010;8: 84–86.

99. Staude IR, Vélez‐Martin E, Andrade BO, Podgaiski LR, Boldrini II, Mendonça M Jr, et al. Local biodiversity erosion in south Brazilian grasslands under moderate levels of landscape habitat loss. J Appl Ecol. Wiley Online Library; 2018;55: 1241–1251.

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden