LTA1 and dmLT enterotoxin-based proteins activate antigen-presenting cells independent of PKA and despite distinct cell entry mechanisms


Autoři: Eduardo Valli aff001;  Robin L. Baudier aff001;  Amanda J. Harriett aff001;  Elizabeth B. Norton aff001
Působiště autorů: Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, United States of America aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227047

Souhrn

Enterotoxin-based proteins are powerful manipulators of mucosal immunity. The A1 domain of heat-labile enterotoxin from E. coli, or LTA1, is a newer adjuvant from this family under investigation for intranasal vaccines. Although LTA1 has been examined in mouse vaccination studies, its ability to directly stimulate immune cells compared to related adjuvant proteins has not been well explored. Here, we perform the first rigorous examination of LTA1’s effect on antigen presenting cells (APC) using a human monocyte cell line THP-1. To better understand LTA1’s stimulatory effects, we compared it to dmLT, or LT-R192G/L211A, a related AB5 adjuvant in clinical trials for oral or parenteral vaccines. LTA1 and dmLT both activated APCs to upregulate MHC-II (HLA-DR), CD86, cytokine secretion (e.g., IL-1β) and inflammasome activation. The effect of LTA1 on surface marker changes (e.g., MHC-II) was highly dose-dependent whereas dmLT exhibited high MHC-II expression regardless of dose. In contrast, cytokine secretion profiles were similar and dose-dependent after both LTA1 and dmLT treatment. Cellular activation by LTA1 was independent of ganglioside binding, as pre-treatment with purified GM1 blocked the effect of dmLT but not LTA1. Unexpectedly, while activation of the inflammasome and cytokine secretion by LTA1 or dmLT was blocked by the protein kinase A inhibitor H89 (similar to previous reports), these responses were not inhibited by a more specific PKA peptide inhibitor or antagonist; thus Indicating that a novel and unknown mechanism is responsible for inflammasome activation and cytokine secretion by LT proteins. Lastly, LTA1 stimulated a similar cytokine profile in primary human monocytes as it did in THP1 cells, including IL-1β, IL-6, IL-8, MIP-1α, MIP-1β, and TNFα. Thus, we report that LTA1 protein programs a dendritic cell-like phenotype in APCs similar to dmLT in a mechanism that is independent of PKA activation and GM1 binding and entry.

Klíčová slova:

Antigen-presenting cells – Cell differentiation – Cytokines – Immunologic adjuvants – Inflammasomes – Monocytes – Secretion – Vaccines


Zdroje

1. Clements JD, Norton EB. The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere. 2018;3(4). doi: 10.1128/mSphere.00215-18 30045966; PubMed Central PMCID: PMC6060342.

2. Clements JD, Hartzog NM, Lyon FL. Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine. 1988;6(3):269–77. Epub 1988/06/01. doi: 10.1016/0264-410x(88)90223-x 3048010.

3. Norton EB, Lawson LB, Freytag LC, Clements JD. Characterization of a mutant Escherichia coli heat-labile toxin, LT(R192G/L211A), as a safe and effective oral adjuvant. Clin Vaccine Immunol. 2011;18(4):546–51. Epub 2011/02/04. doi: CVI.00538-10 [pii] doi: 10.1128/CVI.00538-10 21288994.

4. Ogra PL, Faden H, Welliver RC. Vaccination strategies for mucosal immune responses. Clin Microbiol Rev. 2001;14(2):430–45. doi: 10.1128/CMR.14.2.430-445.2001 11292646; PubMed Central PMCID: PMC88982.

5. Moss J, Osborne JC Jr., Fishman PH, Nakaya S, Robertson DC. Escherichia coli heat-labile enterotoxin. Ganglioside specificity and ADP-ribosyltransferase activity. J Biol Chem. 1981;256(24):12861–5. 6273411.

6. Mudrak B, Kuehn MJ. Heat-labile enterotoxin: beyond G(m1) binding. Toxins (Basel). 2010;2(6):1445–70. Epub 2010/06/01. doi: 10.3390/toxins2061445 22069646; PubMed Central PMCID: PMC3153253.

7. Anosova NG, Chabot S, Shreedhar V, Borawski JA, Dickinson BL, Neutra MR. Cholera toxin, E. coli heat-labile toxin, and non-toxic derivatives induce dendritic cell migration into the follicle-associated epithelium of Peyer's patches. Mucosal Immunol. 2008;1(1):59–67. Epub 2008/12/17. doi: 10.1038/mi.2007.7 [pii] 19079161; PubMed Central PMCID: PMC2614317.

8. Bagley KC, Abdelwahab SF, Tuskan RG, Fouts TR, Lewis GK. Cholera toxin and heat-labile enterotoxin activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cyclic AMP-dependent pathway. Infection and immunity. 2002;70(10):5533–9. Epub 2002/09/14. doi: 10.1128/IAI.70.10.5533-5539.2002 12228279; PubMed Central PMCID: PMC128358.

9. Fahlen-Yrlid L, Gustafsson T, Westlund J, Holmberg A, Strombeck A, Blomquist M, et al. CD11c(high) dendritic cells are essential for activation of CD4+ T cells and generation of specific antibodies following mucosal immunization. J Immunol. 2009;183(8):5032–41. Epub 2009/09/30. doi: jimmunol.0803992 [pii] doi: 10.4049/jimmunol.0803992 19786541.

10. Heine SJ, Diaz-McNair J, Andar AU, Drachenberg CB, van de Verg L, Walker R, et al. Intradermal delivery of Shigella IpaB and IpaD type III secretion proteins: kinetics of cell recruitment and antigen uptake, mucosal and systemic immunity, and protection across serotypes. J Immunol. 2014;192(4):1630–40. doi: 10.4049/jimmunol.1302743 24453241; PubMed Central PMCID: PMC3998105.

11. Novotny LA, Clements JD, Bakaletz LO. Transcutaneous immunization as preventative and therapeutic regimens to protect against experimental otitis media due to nontypeable Haemophilus influenzae. Mucosal immunology. 2011;4(4):456–67. doi: 10.1038/mi.2011.6 21326197; PubMed Central PMCID: PMC3118858.

12. Ryan EJ, McNeela E, Pizza M, Rappuoli R, O'Neill L, Mills KH. Modulation of innate and acquired immune responses by Escherichia coli heat-labile toxin: distinct pro- and anti-inflammatory effects of the nontoxic AB complex and the enzyme activity. J Immunol. 2000;165(10):5750–9. Epub 2000/11/09. doi: 10.4049/jimmunol.165.10.5750 11067933.

13. Brereton CF, Sutton CE, Ross PJ, Iwakura Y, Pizza M, Rappuoli R, et al. Escherichia coli heat-labile enterotoxin promotes protective Th17 responses against infection by driving innate IL-1 and IL-23 production. J Immunol. 2011;186(10):5896–906. Epub 2011/04/15. doi: jimmunol.1003789 [pii] doi: 10.4049/jimmunol.1003789 21490151.

14. Larena M, Holmgren J, Lebens M, Terrinoni M, Lundgren A. Cholera toxin, and the related nontoxic adjuvants mmCT and dmLT, promote human Th17 responses via cyclic AMP-protein kinase A and inflammasome-dependent IL-1 signaling. J Immunol. 2015;194(8):3829–39. doi: 10.4049/jimmunol.1401633 25786687.

15. Leach S, Clements JD, Kaim J, Lundgren A. The adjuvant double mutant Escherichia coli heat labile toxin enhances IL-17A production in human T cells specific for bacterial vaccine antigens. PLoS One. 2012;7(12):e51718. doi: 10.1371/journal.pone.0051718 23284753; PubMed Central PMCID: PMC3527457.

16. Lewis DJ, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E, et al. Transient facial nerve paralysis (Bell's palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One. 2009;4(9):e6999. doi: 10.1371/journal.pone.0006999 19756141; PubMed Central PMCID: PMC2737308.

17. Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med. 2004;350(9):896–903. doi: 10.1056/NEJMoa030595 14985487.

18. Norton EB, Lawson LB, Mahdi Z, Freytag LC, Clements JD. The A subunit of Escherichia coli heat-labile enterotoxin functions as a mucosal adjuvant and promotes IgG2a, IgA, and Th17 responses to vaccine antigens. Infect Immun. 2012;80(7):2426–35. doi: 10.1128/IAI.00181-12 22526674; PubMed Central PMCID: PMC3416479.

19. Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23(1):37–45. Epub 2014/08/14. doi: 10.1016/j.intimp.2014.08.002 25130606

20. Mittar D, Paramban R, McIntyre C. Flow Cytometry and High-Content Imaging to Identify Markers of Monocyte-Macrophage Differentiation. 2011.

21. Frederick DR, Goggins JA, Sabbagh LM, Freytag LC, Clements JD, McLachlan JB. Adjuvant selection regulates gut migration and phenotypic diversity of antigen-specific CD4(+) T cells following parenteral immunization. Mucosal immunology. 2017. doi: 10.1038/mi.2017.70 28792004.

22. Norton EB, Bauer DL, Weldon WC, Oberste MS, Lawson LB, Clements JD. The novel adjuvant dmLT promotes dose sparing, mucosal immunity and longevity of antibody responses to the inactivated polio vaccine in a murine model. Vaccine. 2015;33(16):1909–15. doi: 10.1016/j.vaccine.2015.02.069 25765967.

23. Valli E, Harriett AJ, Nowakowska MK, Baudier RL, Provosty WB, McSween Z, et al. LTA1 is a safe, intranasal enterotoxin-based adjuvant that improves vaccine protection against influenza in young, old and B-cell-depleted (μMT) mice. Sci Rep. 2019;9(15128).

24. Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 2017;17(6):349–62. Epub 2017/04/24. doi: 10.1038/nri.2017.28 28436425.

25. Berges C, Naujokat C, Tinapp S, Wieczorek H, Hoh A, Sadeghi M, et al. A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun. 2005;333(3):896–907. Epub 2005/06/21. doi: 10.1016/j.bbrc.2005.05.171 15963458.

26. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010;28:445–89. Epub 2010/03/03. doi: 10.1146/annurev-immunol-030409-101212 20192806; PubMed Central PMCID: PMC3502616.

27. Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13(2):148–59. Epub 2015/11/10. doi: 10.1038/cmi.2015.95 26549800; PubMed Central PMCID: PMC4786634.

28. van Ginkel FW, Jackson RJ, Yoshino N, Hagiwara Y, Metzger DJ, Connell TD, et al. Enterotoxin-based mucosal adjuvants alter antigen trafficking and induce inflammatory responses in the nasal tract. Infect Immun. 2005;73(10):6892–902. Epub 2005/09/24. doi: 73/10/6892 [pii] doi: 10.1128/IAI.73.10.6892-6902.2005 16177369; PubMed Central PMCID: PMC1230900.

29. Maciel M Jr., Bauer D, Baudier RL, Bitoun J, Clements JD, Poole ST, et al. Intradermal or Sublingual Delivery and Heat-Labile Enterotoxin Proteins Shape Immunologic Responses to a CFA/I Fimbria-Derived Subunit Antigen Vaccine against Enterotoxigenic Escherichia coli. Infect Immun. 2019;87(11). Epub 2019/08/21. doi: 10.1128/IAI.00460-19 31427449

30. Murray AJ. Pharmacological PKA inhibition: all may not be what it seems. Sci Signal. 2008;1(22):re4. Epub 2008/06/05. doi: 10.1126/scisignal.122re4 18523239.

31. Limbutara K, Kelleher A, Yang CR, Raghuram V, Knepper MA. Phosphorylation Changes in Response to Kinase Inhibitor H89 in PKA-Null Cells. Sci Rep. 2019;9(1):2814. Epub 2019/02/28. doi: 10.1038/s41598-019-39116-2 30808967; PubMed Central PMCID: PMC6391403.

32. Okemoto K, Kawasaki K, Hanada K, Miura M, Nishijima M. A potent adjuvant monophosphoryl lipid A triggers various immune responses, but not secretion of IL-1beta or activation of caspase-1. J Immunol. 2006;176(2):1203–8. Epub 2006/01/06. doi: 10.4049/jimmunol.176.2.1203 16394010.

33. Hajishengallis G, Nawar H, Tapping RI, Russell MW, Connell TD. The Type II heat-labile enterotoxins LT-IIa and LT-IIb and their respective B pentamers differentially induce and regulate cytokine production in human monocytic cells. Infect Immun. 2004;72(11):6351–8. Epub 2004/10/27. doi: 10.1128/IAI.72.11.6351-6358.2004 15501764; PubMed Central PMCID: PMC523043.

34. Cheng E, Cardenas-Freytag L, Clements JD. The role of cAMP in mucosal adjuvanticity of Escherichia coli heat-labile enterotoxin (LT). Vaccine. 1999;18(1–2):38–49. Epub 1999/09/29. doi: 10.1016/s0264-410x(99)00168-1 10501233.

35. Negri DR, Pinto D, Vendetti S, Patrizio M, Sanchez M, Riccomi A, et al. Cholera toxin and Escherichia coli heat-labile enterotoxin, but not their nontoxic counterparts, improve the antigen-presenting cell function of human B lymphocytes. Infect Immun. 2009;77(5):1924–35. Epub 2009/02/19. doi: IAI.01559-08 [pii] doi: 10.1128/IAI.01559-08 19223474; PubMed Central PMCID: PMC2681738.

36. Read LT, Hahn RW, Thompson CC, Bauer DL, Norton EB, Clements JD. Simultaneous exposure to Escherichia coli heat-labile and heat-stable enterotoxins increases fluid secretion and alters cyclic nucleotide and cytokine production by intestinal epithelial cells. Infect Immun. 2014;82(12):5308–16. Epub 2014/10/08. doi: 10.1128/IAI.02496-14 25287923; PubMed Central PMCID: PMC4249298.

37. Vogelzang A, McGuire HM, Yu D, Sprent J, Mackay CR, King C. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity. 2008;29(1):127–37. Epub 2008/07/08. doi: 10.1016/j.immuni.2008.06.001 18602282.

38. Arend WP, Guthridge CJ. Biological role of interleukin 1 receptor antagonist isoforms. Ann Rheum Dis. 2000;59 Suppl 1:i60–4. Epub 2000/10/29. doi: 10.1136/ard.59.suppl_1.i60 11053091; PubMed Central PMCID: PMC1766634.

39. Lobet Y, Cluff CW, Cieplak W Jr. Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin. Infection and immunity. 1991;59(9):2870–9. Epub 1991/09/11. 1908825; PubMed Central PMCID: PMC258107.

40. Lycke N, Tsuji T, Holmgren J. The adjuvant effect of Vibrio cholerae and Escherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase activity. European journal of immunology. 1992;22(9):2277–81. Epub 1992/09/01. doi: 10.1002/eji.1830220915 1381311.

41. Agren LC, Ekman L, Lowenadler B, Lycke NY. Genetically engineered nontoxic vaccine adjuvant that combines B cell targeting with immunomodulation by cholera toxin A1 subunit. J Immunol. 1997;158(8):3936–46. 9103464.

42. Eriksson A, Lycke N. The CTA1-DD vaccine adjuvant binds to human B cells and potentiates their T cell stimulating ability. Vaccine. 2003;22(2):185–93. Epub 2003/11/15. doi: 10.1016/s0264-410x(03)00567-x 14615145.

43. Bowman CC, Clements JD. Differential biological and adjuvant activities of cholera toxin and Escherichia coli heat-labile enterotoxin hybrids. Infect Immun. 2001;69(3):1528–35. Epub 2001/02/17. doi: 10.1128/IAI.69.3.1528-1535.2001 11179323; PubMed Central PMCID: PMC98052.

44. Farquhar MJ, Harris HJ, Diskar M, Jones S, Mee CJ, Nielsen SU, et al. Protein kinase A-dependent step(s) in hepatitis C virus entry and infectivity. J Virol. 2008;82(17):8797–811. Epub 2008/06/27. doi: 10.1128/JVI.00592-08 18579596; PubMed Central PMCID: PMC2519651.

45. Liu D, Guo H, Zheng W, Zhang N, Wang T, Wang P, et al. Discovery of the cell-penetrating function of A2 domain derived from LTA subunit of Escherichia coli heat-labile enterotoxin. Appl Microbiol Biotechnol. 2016;100(11):5079–88. doi: 10.1007/s00253-016-7423-x 26960316.

46. Norton EB, Branco LM, Clements JD. Evaluating the A-Subunit of the Heat-Labile Toxin (LT) As an Immunogen and a Protective Antigen Against Enterotoxigenic Escherichia coli (ETEC). PLoS One. 2015;10(8):e0136302. doi: 10.1371/journal.pone.0136302 26305793; PubMed Central PMCID: PMC4549283.

47. Roederer M, Nozzi JL, Nason MC. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A. 2011;79(2):167–74. Epub 2011/01/26. doi: 10.1002/cyto.a.21015 21265010; PubMed Central PMCID: PMC3072288.


Článek vyšel v časopise

PLOS One


2020 Číslo 1