Hexavalent chromium removal and total chromium biosorption from aqueous solution by Quercus crassipes acorn shell in a continuous up-flow fixed-bed column: Influencing parameters, kinetics, and mechanism


Autoři: Erick Aranda-García aff001;  Eliseo Cristiani-Urbina aff001
Působiště autorů: Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Ingeniería Bioquímica, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Ciudad de México, México aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227953

Souhrn

Continuous fixed-bed column studies were carried out, utilizing acorn shell from Quercus crassipes Humb. & Bonpl. (QCS), in order to remove total chromium and Cr(VI) from aqueous solution. Effects of various fixed-bed column parameters such as influent solution pH, influent flow rate, QCS bed height, and influent Cr(VI) concentration were investigated. Results from the fixed-bed column experiments demonstrate that total chromium biosorption and Cr(VI) removal by QCS depend strongly on the pH of influent solution. The highest capacities for Cr(VI) removal and total chromium biosorption are about 181.56 and 110.35 mg g-1 and are achieved at influent solution pH of 1.0 and 2.0, respectively. Besides this, total chromium biosorption capacities increased from 104.25 to 116.14 mg g-1, 109.07 to 117.44 mg g-1, and 85.02 to 129.87 mg g-1, as bed height, inlet flow rate, and influent Cr(VI) concentration increased from 1.7 to 6.5 cm, 0.25 to 1 mL min-1, and 50 to 400 mg L-1, respectively. The dose–response model defines the entire breakthrough curve for total chromium biosorption onto QCS, under all experimental conditions. X-ray photoelectron spectroscopy (XPS) and biosorption kinetic studies revealed that QCS is able to remove toxic Cr(VI) from acidic liquid solution by means of a complex mechanism that involves the binding of Cr(VI) oxyanions to positively charged groups present at the QCS surface, after which the Cr(VI) species are reduced to Cr(III) by adjacent electron donor groups, and the generated Cr(III) ions then become partially bound to the QCS biomass and partially released into the liquid phase. Results show that QCS can be employed as an easily accessible, abundant, eco-friendly, and inexpensive biosorbent for the removal of total chromium and Cr(VI) from Cr(VI) solutions, in continuous operation.

Klíčová slova:

Aqueous solutions – Dose prediction methods – Effluent – Flow rate – Liquids – Solutions – Chromium – X-ray photoelectron spectroscopy


Zdroje

1. Jobby R, Jha P, Yadav AK, Desai N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere. 2018;207: 255–266. doi: 10.1016/j.chemosphere.2018.05.050 29803157

2. Aranda-García E, Cristiani-Urbina E. Effect of pH on hexavalent and total chromium removal from aqueous solutions by avocado shell using batch and continuous systems. Environ Sci Pollut Res. 2019;26(4): 3157–3173.

3. Agency for Toxic Substances and Disease Registry. ATSDR's substance priority list; 2017. Available from: https://www.atsdr.cdc.gov/spl/

4. Xu T, Xue J, Zhang X, He G, Chen H. Ultrafine cobalt nanoparticles supported on reduced graphene oxide: efficient catalyst for fast reduction of hexavalent chromium at room temperature. Appl Surf Sci. 2017;402: 294–300.

5. Xia S, Song Z, Jeyakumar P, Shaheen SM, Rinklebe J, Ok YS, et al. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit Rev Environ Sci Technol. 2019;49(12): 1027–1078.

6. Rangabhashiyam S, Balasubramanian P. Lignocellulosic biosorbents for the removal of hexavalent chromium from aqueous solutions: A review. J Environ Biotechnol Res. 2016;5: 39–46.

7. Netzahuatl-Muñoz AR, Cristiani-Urbina MDC, Cristiani-Urbina E. Chromium biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark: Kinetics, equilibrium and thermodynamic studies. PLoS ONE. 2015;10(9): e0137086. doi: 10.1371/journal.pone.0137086 26352933

8. Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R. Oil palm biomass-based adsorbents for the removal of water pollutants – A review. J Environ Sci Health Pt. C-Environ Carcinog Ecotoxicol Rev. 2011;29: 177–222.

9. Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, et al. The use of date palm as a potential adsorbent for wastewater treatment: a review. Environ Sci Pollut Res. 2012;19: 1464–1484.

10. Danish M, Hashim R, Ibrahim MNM, Rafatullah M, Sulaiman O. Surface characterization and comparative adsorption properties of Cr(VI) on pyrolysed adsorbents of Acacia mangium wood and Phoenix dactylifera L. stone carbon. J Anal Appl Pyrolysis 2012;97: 19–28.

11. Vakili M, Rafatullah M, Ibrahim MH, Abdullah AZ, Salamatinia B, Gholami Z. Oil palm biomass as an adsorbent for heavy metals. Rev Environ Contam Toxicol. 2014;232: 61–88. doi: 10.1007/978-3-319-06746-9_3 24984835

12. Aranda-García E, Morales-Barrera L, Pineda-Camacho G, Cristiani-Urbina E. Effect of pH, ionic strength, and background electrolytes on Cr(VI) and total chromium removal by acorn shell of Quercus crassipes Humb. & Bonpl. Environ Monit Assess. 2014;186: 6207–6221. doi: 10.1007/s10661-014-3849-8 24880725

13. Lopez-Nuñez PV, Aranda-García E, Cristiani-Urbina MDC, Morales-Barrera L, Cristiani-Urbina E. Removal of hexavalent and total chromium from aqueous solutions by plum (P. domestica L.) tree bark. Environ Eng Manag J. 2014;13: 1927–1938.

14. Netzahuatl-Muñoz AR, Guillén-Jiménez FDM, Chávez-Gómez B, Villegas-Garrido TL, Cristiani-Urbina E. Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solutions by Cupressus lusitanica bark. Water Air Soil Pollut. 2012;223: 625–641.

15. Park D, Yun Y-S, Park J-M. Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Environ Sci Technol. 2004;38: 4860–4864. doi: 10.1021/es035329+ 15487797

16. Bharathi KS, Ramesh SPT. Fixed-bed column studies on biosorption of crystal violet from aqueous solution by Citrullus lanatus rind and Cyperus rotundus. Appl Water Sci. 2013;3: 673–687.

17. Kumar D, Pandey LK, Gaur JP. Metal sorption by algal biomass: From batch to continuous system. Algal Res. 2016;18: 95–109.

18. Farooq U, Athar M, Khan MA, Kozinski JA. Biosorption of Pb(II) and Cr(III) from aqueous solutions: breakthrough curves and modeling studies. Environ Monit Assess. 2013;185: 845–854. doi: 10.1007/s10661-012-2595-z 22426844

19. Hasan SH, Srivastava P, Ranjan D, Talat M. Biosorption of Cr(VI) from aqueous solution using A. hydrophila in up-flow column: optimization of process variables. Appl Microbiol Biotechnol. 2009;83: 567–577. doi: 10.1007/s00253-009-1984-x 19333592

20. Jafari SA, Jamali A. Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles. Korean J Chem Eng. 2016;33(4): 1296–1304.

21. Chen S, Yue Q, Gao B, Li Q, Xu X, Fu K. Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: A fixed-bed column study. Bioresour Technol. 2012;113: 114–120. doi: 10.1016/j.biortech.2011.11.110 22189077

22. Malkoc E, Nuhoglu Y, Abali Y. Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: Prediction of breakthrough curves. Chem Eng J. 2006;119: 61–68.

23. Aranda-García E, Netzahuatl-Muñoz AR, Cristiani-Urbina MDC, Morales-Barrera L, Pineda-Camacho G, Cristiani-Urbina E. Bioreduction of Cr(VI) and total chromium biosorption by acorn shell of Quercus crassipes Humb. & Bonpl. J Biotechnol. 2010;150S: S228.

24. Horwitz W, Latimer GW Jr. Official Methods of Analysis of AOAC International. 18th ed. Maryland: Association of Official Analytical Chemists, AOAC International; 2005.

25. Hasan HS, Ranjan D, Talat M. Water hyacinth biomass (WHB) for the biosorption of hexavalent chromium: optimization of process parameters. Bioresources. 2010;5: 563–575.

26. Aranda-García E, Cristiani-Urbina E. Kinetic, equilibrium and thermodynamic analyses of Ni(II) biosorption from aqueous solution by acorn shell of Quercus crassipes. Water Air Soil Pollut. 2018;229(4): 119.

27. Chatterjee A, Schiewer S. Biosorption of cadmium(II) ions by citrus peels in a packed bed column: effect of process parameters and comparison of different breakthrough curve models. Clean-Soil Air Water. 2011;39(9): 874–881.

28. Calero M, Hernáinz F, Blázquez G, Tenorio G, Martín-Lara MA. Study of Cr(III) biosorption in a fixed-bed column. J Hazard Mater. 2009;171: 886–893. doi: 10.1016/j.jhazmat.2009.06.082 19616378

29. Company Hach. Hach Water Analysis Handbook, 5th ed. Loveland, CO; 2008.

30. Vieira MGA, Oisiovici RM, Gimenes ML, Silva MGC. Biosorption of chromium(VI) using a Sargassum sp. packed-bed column. Bioresour Technol. 2008;99: 3094–3099. doi: 10.1016/j.biortech.2007.05.071 17689245

31. Zhang Y, Yang L, Wang D, Li D. Structure elucidation and properties of different lignins isolated from acorn shell of Quercus variabilis Bl. Int J Biol Macromol. 2018;107: 1193–1202. doi: 10.1016/j.ijbiomac.2017.09.099 28958820

32. Dupont L, Guillon E. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ Sci Technol. 2003;37: 4235–4241. doi: 10.1021/es0342345 14524458

33. Fiol N, Escudero C, Poch J, Villaescusa I. Preliminary studies on Cr(VI) removal from aqueous solution using grape stalk wastes encapsulated in calcium alginate beads in a packed bed up-flow column. React Funct Polym. 2006;66: 795–807.

34. Gokhale SV, Jyoti KK, Lele SS. Modeling of chromium (VI) biosorption by immobilized Spirulina platensis in packed column. J Hazard Mater. 2009;170: 735–743. doi: 10.1016/j.jhazmat.2009.05.005 19493617

35. Senthilkumar R, Vijayaraghavan K, Jegan J, Velan M. Batch and column removal of total chromium from aqueous solution using Sargassum polycystum. Environ Prog Sustain Energy. 2010;29(3): 334–341.

36. Zang T, Cheng Z, Lu L, Jin Y, Xu X, Ding W, et al. Removal of Cr(VI) by modified and immobilized Auricularia auricula spent substrate in fixed-bed column. Ecol Eng. 2017;99: 358–365.

37. Calero M, Ronda A, Pérez A, Yañez A, Trujillo MC, Martín-Lara MA. The scale-up of Cr3+ biosorption onto olive stone in a fixed bed column. Desalin Water Treat. 2016;57: 25140–25152.

38. Samuel J, Pulimi M, Paul ML, Maurya A, Chandrasekaran N, Mukherjee A. Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads. Bioresour Technol 2013;128: 423–430. doi: 10.1016/j.biortech.2012.10.116 23201524

39. Silva B, Figueiredo H, Quintelas C, Neves IC, Tavares T. Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite. Int Biodeter Biodegr. 2012;74: 116–123.

40. Park D, Lim S-R, Yun Y-S, Park JM. Reliable evidences that the removal mechanism of hexavalent chromium by biomaterials is adsorption-coupled reduction. Chemosphere. 2007;70: 298–305. doi: 10.1016/j.chemosphere.2007.06.007 17644158


Článek vyšel v časopise

PLOS One


2020 Číslo 1