Intra-individual variation of particles in exhaled air and of the contents of Surfactant protein A and albumin


Autoři: Spela Kokelj aff001;  Jeong-Lim Kim aff001;  Marianne Andersson aff001;  Gunilla Runström Eden aff001;  Björn Bake aff002;  Anna-Carin Olin aff001
Působiště autorů: Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden aff001;  Unit of Respiratory Medicine and Allergy, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227980

Souhrn

Introduction

Particles in exhaled air (PEx) provide samples of respiratory tract lining fluid from small airways containing, for example, Surfactant protein A (SP-A) and albumin, potential biomarkers of small airway disease. We hypothesized that there are differences between morning, noon, and afternoon measurements and that the variability of repeated measurements is larger between days than within days.

Methods

PEx was obtained in sixteen healthy non-smoking adults on 11 occasions, within one day and between days. SP-A and albumin were quantified by ELISA. The coefficient of repeatability (CR), intraclass correlation coefficient (ICC), and coefficient of variation (CV) were used to assess the variation of repeated measurements.

Results

SP-A and albumin increased significantly from morning towards the noon and afternoon by 13% and 25% on average, respectively, whereas PEx number concentration and particle mean mass did not differ significantly between the morning, noon and afternoon. Between-day CRs were not larger than within-day CRs.

Conclusions

Time of the day influences the contents of SP-A and albumin in exhaled particles. The variation of repeated measurements was rather high but was not influenced by the time intervals between measurements.

Klíčová slova:

Albumins – Asthma – Biomarkers – Diurnal variations – Chronic obstructive pulmonary disease – Normal distribution – Spirometry – Surfactants


Zdroje

1. Almstrand AC, Bake B, Ljungstrom E, Larsson P, Bredberg A, Mirgorodskaya E, et al. Effect of airway opening on production of exhaled particles. Journal of applied physiology (Bethesda, Md: 1985). 2010;108(3):584–8. Epub 2010/01/09. doi: 10.1152/japplphysiol.00873.2009 20056850.

2. Bake B, Larsson P, Ljungkvist G, Ljungstrom E, Olin AC. Exhaled particles and small airways. Respiratory research. 2019;20(1):8. Epub 2019/01/13. doi: 10.1186/s12931-019-0970-9 30634967; PubMed Central PMCID: PMC6330423.

3. Hughes JM, Rosenzweig DY, Kivitz PB. Site of airway closure in excised dog lungs: histologic demonstration. J Appl Physiol. 1970;29(3):340–4. Epub 1970/09/01. doi: 10.1152/jappl.1970.29.3.340 5451310.

4. Larstad M, Almstrand AC, Larsson P, Bake B, Larsson S, Ljungstrom E, et al. Surfactant Protein A in Exhaled Endogenous Particles Is Decreased in Chronic Obstructive Pulmonary Disease (COPD) Patients: A Pilot Study. PLoS One. 2015;10(12):e0144463. Epub 2015/12/15. doi: 10.1371/journal.pone.0144463 26656890; PubMed Central PMCID: PMC4676630.

5. Bredberg A, Gobom J, Almstrand AC, Larsson P, Blennow K, Olin AC, et al. Exhaled endogenous particles contain lung proteins. Clin Chem. 2012;58(2):431–40. Epub 2011/12/14. doi: 10.1373/clinchem.2011.169235 22156667.

6. Bake B, Ljungstrom E, Claesson A, Carlsen HK, Holm M, Olin AC. Exhaled Particles After a Standardized Breathing Maneuver. J Aerosol Med Pulm Drug Deliv. 2017;30(4):267–73. Epub 2017/03/10. doi: 10.1089/jamp.2016.1330 28277815.

7. Larsson P, Larstad M, Bake B, Hammar O, Bredberg A, Almstrand AC, et al. Exhaled particles as markers of small airway inflammation in subjects with asthma. Clinical physiology and functional imaging. 2017;37(5):489–97. Epub 2015/12/10. doi: 10.1111/cpf.12323 26648443.

8. Schwarz K, Biller H, Windt H, Koch W, Hohlfeld JM. Characterization of exhaled particles from the healthy human lung—a systematic analysis in relation to pulmonary function variables. J Aerosol Med Pulm Drug Deliv. 2010;23(6):371–9. Epub 2010/05/27. doi: 10.1089/jamp.2009.0809 20500095.

9. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–68. Epub 2005/11/03. doi: 10.1183/09031936.05.00035205 16264058.

10. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38. Epub 2005/08/02. doi: 10.1183/09031936.05.00034805 16055882.

11. Brisman J, Kim JL, Olin AC, Toren K, Bake B. Spirometric reference equations for Swedish adults. Clinical physiology and functional imaging. 2017;37(6):640–5. Epub 2016/02/13. doi: 10.1111/cpf.12349 26865107.

12. Almstrand AC, Ljungstrom E, Lausmaa J, Bake B, Sjovall P, Olin AC. Airway monitoring by collection and mass spectrometric analysis of exhaled particles. Analytical chemistry. 2009;81(2):662–8. Epub 2009/01/15. doi: 10.1021/ac802055k 19140778.

13. Holmgren H, Gerth E, Ljungstrom E, Larsson P, Almstrand AC, Bake B, et al. Effects of breath holding at low and high lung volumes on amount of exhaled particles. Respiratory physiology & neurobiology. 2013;185(2):228–34. Epub 2012/11/06. doi: 10.1016/j.resp.2012.10.010 23123969.

14. Vaz S, Falkmer T, Passmore AE, Parsons R, Andreou P. The case for using the repeatability coefficient when calculating test-retest reliability. PLoS One. 2013;8(9):e73990. Epub 2013/09/17. doi: 10.1371/journal.pone.0073990 24040139; PubMed Central PMCID: PMC3767825.

15. Balbi B, Pignatti P, Corradi M, Baiardi P, Bianchi L, Brunetti G, et al. Bronchoalveolar lavage, sputum and exhaled clinically relevant inflammatory markers: values in healthy adults. Eur Respir J. 2007;30(4):769–81. Epub 2007/10/02. doi: 10.1183/09031936.00112306 17906085.

16. Ettensohn DB, Jankowski MJ, Duncan PG, Lalor PA. Bronchoalveolar lavage in the normal volunteer subject. I. Technical aspects and intersubject variability. Chest. 1988;94(2):275–80. Epub 1988/08/01. doi: 10.1378/chest.94.2.275 3396403.

17. Ettensohn DB, Jankowski MJ, Redondo AA, Duncan PG. Bronchoalveolar lavage in the normal volunteer subject. 2. Safety and results of repeated BAL, and use in the assessment of intrasubject variability. Chest. 1988;94(2):281–5. Epub 1988/08/01. doi: 10.1378/chest.94.2.281 3396404.

18. Madsen J, Tornoe I, Nielsen O, Koch C, Steinhilber W, Holmskov U. Expression and localization of lung surfactant protein A in human tissues. Am J Respir Cell Mol Biol. 2003;29(5):591–7. Epub 2003/06/05. doi: 10.1165/rcmb.2002-0274OC 12777246.

19. Haczku A. Protective role of the lung collectins surfactant protein A and surfactant protein D in airway inflammation. The Journal of allergy and clinical immunology. 2008;122(5):861–79; quiz 80–1. Epub 2008/11/13. doi: 10.1016/j.jaci.2008.10.014 19000577; PubMed Central PMCID: PMC4097097.

20. Khor YH, Teoh AK, Lam SM, Mo DC, Weston S, Reid DW, et al. Increased vascular permeability precedes cellular inflammation as asthma control deteriorates. Clin Exp Allergy. 2009;39(11):1659–67. Epub 2009/10/29. doi: 10.1111/j.1365-2222.2009.03349.x 19860817.

21. Winkler C, Atochina-Vasserman EN, Holz O, Beers MF, Erpenbeck VJ, Krug N, et al. Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD. Respiratory research. 2011;12:29. Epub 2011/03/15. doi: 10.1186/1465-9921-12-29 21396106; PubMed Central PMCID: PMC3061904.

22. Lomas DA, Silverman EK, Edwards LD, Miller BE, Coxson HO, Tal-Singer R, et al. Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort. Thorax. 2008;63(12):1058–63. Epub 2008/09/02. doi: 10.1136/thx.2008.102574 18757456.

23. Lock-Johansson S, Vestbo J, Sorensen GL. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease. Respiratory research. 2014;15:147. Epub 2014/11/27. doi: 10.1186/s12931-014-0147-5 25425298; PubMed Central PMCID: PMC4256818.

24. Johansson SL, Tan Q, Holst R, Christiansen L, Hansen NC, Hojland AT, et al. Surfactant protein D is a candidate biomarker for subclinical tobacco smoke-induced lung damage. American journal of physiology Lung cellular and molecular physiology. 2014;306(9):L887–95. Epub 2014/03/13. doi: 10.1152/ajplung.00340.2013 24610936.

25. Lomas DA, Silverman EK, Edwards LD, Miller BE, Coxson HO, Tal-Singer R. Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort. Thorax. 2008;63(12):1058–63. Epub 2008/09/02. doi: 10.1136/thx.2008.102574 18757456.

26. Hoegh SV, Sorensen GL, Tornoe I, Lottenburger T, Ytting H, Nielsen HJ, et al. Long-term stability and circadian variation in circulating levels of surfactant protein D. Immunobiology. 2010;215(4):314–20. Epub 2009/06/23. doi: 10.1016/j.imbio.2009.05.001 19540617.

27. Kuroki Y, Takahashi H, Chiba H, Akino T. Surfactant proteins A and D: disease markers. Biochimica et biophysica acta. 1998;1408(2–3):334–45. Epub 1998/11/14. doi: 10.1016/s0925-4439(98)00079-9 9813383.

28. Helleday R, Segerstedt B, Forsberg B, Mudway I, Nordberg G, Bernard A, et al. Exploring the time dependence of serum clara cell protein as a biomarker of pulmonary injury in humans. Chest. 2006;130(3):672–5. Epub 2006/09/12. doi: 10.1378/chest.130.3.672 16963661.

29. Fernandez-Real JM, Chico B, Shiratori M, Nara Y, Takahashi H, Ricart W. Circulating surfactant protein A (SP-A), a marker of lung injury, is associated with insulin resistance. Diabetes care. 2008;31(5):958–63. Epub 2008/02/21. doi: 10.2337/dc07-2173 18285549.

30. Ropcke S, Holz O, Lauer G, Muller M, Rittinghausen S, Ernst P, et al. Repeatability of and relationship between potential COPD biomarkers in bronchoalveolar lavage, bronchial biopsies, serum, and induced sputum. PLoS One. 2012;7(10):e46207. Epub 2012/10/12. doi: 10.1371/journal.pone.0046207 23056262; PubMed Central PMCID: PMC3464239.

31. Spengler CM, Shea SA. Endogenous circadian rhythm of pulmonary function in healthy humans. Am J Respir Crit Care Med. 2000;162(3 Pt 1):1038–46. Epub 2000/09/16. doi: 10.1164/ajrccm.162.3.9911107 10988127.

32. Borsboom GJ, van Pelt W, van Houwelingen HC, van Vianen BG, Schouten JP, Quanjer PH. Diurnal variation in lung function in subgroups from two Dutch populations: consequences for longitudinal analysis. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1163–71. Epub 1999/04/08. doi: 10.1164/ajrccm.159.4.9703106 10194161.

33. Frey TM, Crapo RO, Jensen RL, Elliott CG. Diurnal variation of the diffusing capacity of the lung: is it real? Am Rev Respir Dis. 1987;136(6):1381–4. Epub 1987/12/01. doi: 10.1164/ajrccm/136.6.1381 3688643.

34. Kharitonov SA, Gonio F, Kelly C, Meah S, Barnes PJ. Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children. Eur Respir J. 2003;21(3):433–8. Epub 2003/03/29. doi: 10.1183/09031936.03.00066903a 12661997.

35. Ekroos H, Karjalainen J, Sarna S, Laitinen LA, Sovijarvi AR. Short-term variability of exhaled nitric oxide in young male patients with mild asthma and in healthy subjects. Respiratory medicine. 2002;96(11):895–900. Epub 2002/11/07. doi: 10.1053/rmed.2002.1378 12418587.

36. Honma S. Development of the mammalian circadian clock. Eur J Neurosci. 2018. Epub 2018/12/28. doi: 10.1111/ejn.14318 30589961.

37. Dickens JA, Miller BE, Edwards LD, Silverman EK, Lomas DA, Tal-Singer R, et al. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort. Respiratory research. 2011;12:146. Epub 2011/11/08. doi: 10.1186/1465-9921-12-146 22054035; PubMed Central PMCID: PMC3247194.

38. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231–40. Epub 2005/02/12. doi: 10.1519/15184.1 15705040.

39. Faul JL, Demers EA, Burke CM, Poulter LW. The reproducibility of repeat measures of airway inflammation in stable atopic asthma. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1457–61. Epub 1999/11/11. doi: 10.1164/ajrccm.160.5.9812027 10556105.

40. Ekroos H, Tuominen J, Sovijarvi AR. Exhaled nitric oxide and its long-term variation in healthy non-smoking subjects. Clin Physiol. 2000;20(6):434–9. Epub 2000/12/02. doi: 10.1046/j.1365-2281.2000.00277.x 11100390.

41. Schwarz K, Biller H, Windt H, Koch W, Hohlfeld JM. Characterization of exhaled particles from the human lungs in airway obstruction. J Aerosol Med Pulm Drug Deliv. 2015;28(1):52–8. Epub 2014/06/11. doi: 10.1089/jamp.2013.1104 24914577.


Článek vyšel v časopise

PLOS One


2020 Číslo 1