Immune recovery markers in a double blind clinical trial comparing dolutegravir and raltegravir based regimens as initial therapy (SPRING-2)


Autoři: Jose-Ramon Blanco aff001;  Belen Alejos aff002;  Santiago Moreno aff003
Působiště autorů: Department of Infectious Diseases, Hospital San Pedro–CIBIR, Logroño (La Rioja), Spain aff001;  Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain aff002;  Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226724

Souhrn

Background

Multiple T-cell marker recovery (MTMR: CD4+ T-cells >500 cel/mm3 plus CD4+% >29% plus CD4+/CD8+ ratio >1) has been proposed as the most complete level of immune reconstitution. In this study we quantified differences in the CD4+/CD8+ ratio, CD4+% recovery and MTMR after starting HIV-1 treatment with dolutegravir (DTG) vs. raltegravir (RAL) plus a NRTI backbone.

Methods

Exploratory post-hoc analysis of the SPRING-2 study, a randomized double-blind clinical trial comparing DTG and RAL as third agents in naive HIV-infected patients at 100 sites in Canada, USA, Australia, and Europe. Percentage differences and corresponding precision based on 95% confidence intervals (CI) and p-values were calculated for i) CD4+/CD8+ ratio normalization, ii) CD4+% normalization, and iii) the achievement of MTMR.

Results

A total of 822 participants were analyzed (411 in each group). No statistically significant differences in the proportion of patients who reached a CD4+/CD8+ ratio ≥0.5 & ≥1 at w48 & w96 were observed. At w96, the proportion of patients with a CD4+/CD8+ ratio ≥1 was similar (30.43% DTG vs. 29.57% RAL). No differences were observed in the mean increase in CD4+/CD8+ ratio from baseline at both w48 & w96. Similarly, no significant differences in the CD4+/CD8+>29% were observed at w96 (72.95% DTG vs 69.28% RAL). The proportion of patients attaining MTMR criteria was also similar in the DTG group and the RAL group at w48 (20.33% vs. 18.26%; difference 2.07 (95%CI (-3.67;7.81) P = 0.481 and w96 (28.70% vs. 27.13; difference 1.56 (95%CI -5.22;8.34) P = 0.652).

Conclusion

After comparing DTG and RAL, no differences on immune recovery markers were observed.

Klíčová slova:

Antiretroviral therapy – Antiretrovirals – Clinical trials – Cytotoxic T cells – HIV – HIV-1 – T cells – Viral load


Zdroje

1. Wada NI, Jacobson LP, Margolick JB, Breen EC, Macatangay B, Penugonda S, et al. The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation. AIDS. 2015;29(4):463–71. doi: 10.1097/QAD.0000000000000545 25630041; PubMed Central PMCID: PMC4311407.

2. Fogli M, Iaria M, Foca E, Giagulli C, Caccuri F, Maggi F, et al. For timing of HAART is less more? CD4+/CD8+ ratio and CD4+ percentage as surrogate markers for more complex immunological features. New Microbiol. 2014;37(1):75–80. Epub 2014/02/18. 24531173.

3. Serrano-Villar S, Perez-Elias MJ, Dronda F, Casado JL, Moreno A, Royuela A, et al. Increased risk of serious non-AIDS-related events in HIV-infected subjects on antiretroviral therapy associated with a low CD4/CD8 ratio. PLoS One. 2014;9(1):e85798. doi: 10.1371/journal.pone.0085798 24497929; PubMed Central PMCID: PMC3907380.

4. Serrano-Villar S, Sainz T, Lee SA, Hunt PW, Sinclair E, Shacklett BL, et al. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog. 2014;10(5):e1004078. doi: 10.1371/journal.ppat.1004078 24831517; PubMed Central PMCID: PMC4022662.

5. Mussini C, Lorenzini P, Cozzi-Lepri A, Lapadula G, Marchetti G, Nicastri E, et al. CD4/CD8 ratio normalisation and non-AIDS-related events in individuals with HIV who achieve viral load suppression with antiretroviral therapy: an observational cohort study. Lancet HIV. 2015;2(3):e98–106. doi: 10.1016/S2352-3018(15)00006-5 26424550.

6. Bernal Morell E, Serrano Cabeza J, Munoz A, Marin I, Masia M, Gutierrez F, et al. The CD4/CD8 ratio is inversely associated with carotid intima-media thickness progression in human immunodeficiency virus-infected patients on antiretroviral treatment. AIDS Res Hum Retroviruses. 2016;32(7):648–53. doi: 10.1089/AID.2015.0385 27005326.

7. Serrano-Villar S, Moreno S, Fuentes-Ferrer M, Sanchez-Marcos C, Avila M, Sainz T, et al. The CD4:CD8 ratio is associated with markers of age-associated disease in virally suppressed HIV-infected patients with immunological recovery. HIV Med. 2014;15(1):40–9. Epub 2013/09/07. doi: 10.1111/hiv.12081 24007533.

8. Thornhill J, Inshaw J, Oomeer S, Kaleebu P, Cooper D, Ramjee G, et al. Enhanced normalisation of CD4/CD8 ratio with early antiretroviral therapy in primary HIV infection. J Int AIDS Soc. 2014;17(4 Suppl 3):19480. doi: 10.7448/IAS.17.4.19480 25393989; PubMed Central PMCID: PMC4224908.

9. Hema MN, Ferry T, Dupon M, Cuzin L, Verdon R, Thiebaut R, et al. Low CD4/CD8 ratio Is associated with non AIDS-defining cancers in patients on antiretroviral therapy: ANRS CO8 (Aproco/Copilote) Prospective Cohort Study. PLoS One. 2016;11(8):e0161594. doi: 10.1371/journal.pone.0161594 27548257; PubMed Central PMCID: PMC4993515.

10. Hulgan T, Raffanti S, Kheshti A, Blackwell RB, Rebeiro PF, Barkanic G, et al. CD4 lymphocyte percentage predicts disease progression in HIV-infected patients initiating highly active antiretroviral therapy with CD4 lymphocyte counts >350 lymphocytes/mm3. J Infect Dis. 2005;192(6):950–7. doi: 10.1086/432955 16107946.

11. Guiguet M, Kendjo E, Carcelain G, Abgrall S, Mary-Krause M, Tattevin P, et al. CD4+ T-cell percentage is an independent predictor of clinical progression in AIDS-free antiretroviral-naive patients with CD4+ T-cell counts >200 cells/mm3. Antivir Ther. 2009;14(3):451–7. 19474479.

12. Taylor JM, Fahey JL, Detels R, Giorgi JV. CD4 percentage, CD4 number, and CD4:CD8 ratio in HIV infection: which to choose and how to use. J Acquir Immune Defic Syndr. 1989;2(2):114–24. 2495346.

13. Castilho JL, Shepherd BE, Koethe J, Turner M, Bebawy S, Logan J, et al. CD4+/CD8+ ratio, age, and risk of serious noncommunicable diseases in HIV-infected adults on antiretroviral therapy. AIDS. 2016;30(6):899–908. doi: 10.1097/QAD.0000000000001005 26959354; PubMed Central PMCID: PMC4785819.

14. Torti C, Prosperi M, Motta D, Digiambenedetto S, Maggiolo F, Paraninfo G, et al. Factors influencing the normalization of CD4+ T-cell count, percentage and CD4+/CD8+ T-cell ratio in HIV-infected patients on long-term suppressive antiretroviral therapy. Clin Microbiol Infect. 2012;18(5):449–58. Epub 2011/09/17. doi: 10.1111/j.1469-0691.2011.03650.x 21919996.

15. AIDS Study Group GeSIDA of the Spanish Society of Infectious Diseases Clinical M, the National AP. Executive summary of the GeSIDA/National AIDS Plan consensus document on antiretroviral therapy in adults infected by the human immunodeficiency virus (updated January 2018). Enferm Infecc Microbiol Clin. 2018. doi: 10.1016/j.eimc.2018.02.010 29759422.

16. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf [Accessed 30 May 2018].

17. Clotet B, Feinberg J, van Lunzen J, Khuong-Josses MA, Antinori A, Dumitru I, et al. Once-daily dolutegravir versus darunavir plus ritonavir in antiretroviral-naive adults with HIV-1 infection (FLAMINGO): 48 week results from the randomised open-label phase 3b study. Lancet. 2014;383(9936):2222–31. doi: 10.1016/S0140-6736(14)60084-2 24698485.

18. Lennox JL, Landovitz RJ, Ribaudo HJ, Ofotokun I, Na LH, Godfrey C, et al. Efficacy and tolerability of 3 nonnucleoside reverse transcriptase inhibitor-sparing antiretroviral regimens for treatment-naive volunteers infected with HIV-1: a randomized, controlled equivalence trial. Ann Intern Med. 2014;161(7):461–71. doi: 10.7326/M14-1084 25285539; PubMed Central PMCID: PMC4412467.

19. Lennox JL, DeJesus E, Lazzarin A, Pollard RB, Madruga JV, Berger DS, et al. Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: a multicentre, double-blind randomised controlled trial. Lancet. 2009;374(9692):796–806. doi: 10.1016/S0140-6736(09)60918-1 19647866.

20. Walmsley SL, Antela A, Clumeck N, Duiculescu D, Eberhard A, Gutierrez F, et al. Dolutegravir plus abacavir-lamivudine for the treatment of HIV-1 infection. N Engl J Med. 2013;369(19):1807–18. doi: 10.1056/NEJMoa1215541 24195548.

21. Raffi F, Rachlis A, Stellbrink HJ, Hardy WD, Torti C, Orkin C, et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet. 2013;381(9868):735–43. doi: 10.1016/S0140-6736(12)61853-4 23306000.

22. Blanco JR, Alejos B, Moreno S. Impact of dolutegravir and efavirenz on immune recovery markers: results from a randomized clinical trial. Clin Microbiol Infect. 2018; 24(8):900–907. doi: 10.1016/j.cmi.2017.11.016 29183782.

23. Gooley T. A., Leisenring W., Crowley J., and Storer B. E. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. 1999;18(6):695–706. doi: 10.1002/(sici)1097-0258(19990330)18:6<695::aid-sim60>3.0.co;2-o 10204198

24. Fine JP GR. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.

25. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med. 2007;26(11):2389–430. doi: 10.1002/sim.2712 17031868.

26. Lichtenstein KA, Armon C, Nagabhushanam V, Efaw BJ, Frazer-Abel A, Hiserote ME, et al. A pilot study to assess inflammatory biomarker changes when raltegravir is added to a virologically suppressive HAART regimen in HIV-1-infected patients with limited immunological responses. Antivir Ther. 2012;17(7):1301–9. Epub 2012/09/06. doi: 10.3851/IMP2350 22948290.

27. Monteiro P, Perez I, Laguno M, Martinez-Rebollar M, Gonzalez-Cordon A, Lonca M, et al. Dual therapy with etravirine plus raltegravir for virologically suppressed HIV-infected patients: a pilot study. J Antimicrob Chemother. 2014;69(3):742–8. doi: 10.1093/jac/dkt406 24128667.

28. Serrano-Villar S, Zhou Y, Rodgers AJ, Moreno S. Different impact of raltegravir versus efavirenz on CD4/CD8 ratio recovery in HIV-infected patients. J Antimicrob Chemother. 2017;72:235–9. doi: 10.1093/jac/dkw375 27655859.

29. Trickey A, May MT, Schommers P, Tate J, Ingle SM, Guest JL, et al. CD4:CD8 ratio and CD8 count as prognostic markers for mortality in human immunodeficiency virus-infected patients on antiretroviral therapy: The Antiretroviral Therapy Cohort Collaboration (ART-CC). Clin Infect Dis. 2017;65(6):959–66. doi: 10.1093/cid/cix466 28903507; PubMed Central PMCID: PMC5850630.

30. Wikby A, Johansson B, Ferguson F, Olsson J. Age-related changes in immune parameters in a very old population of Swedish people: a longitudinal study. Exp Gerontol. 1994;29(5):531–41. doi: 10.1016/0531-5565(94)90036-1 7828662.

31. Ferguson FG, Wikby A, Maxson P, Olsson J, Johansson B. Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol A Biol Sci Med Sci. 1995;50(6):B378–82. doi: 10.1093/gerona/50a.6.b378 7583794.

32. Wikby A, Maxson P, Olsson J, Johansson B, Ferguson FG. Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study. Mech Ageing Dev. 1998;102(2–3):187–98. doi: 10.1016/s0047-6374(97)00151-6 9720651.

33. Mutoh Y, Nishijima T, Inaba Y, Tanaka N, Kikuchi Y, Gatanaga H, et al. Incomplete recovery of CD4 count, CD4 percentage, and CD4/CD8 ratio in HIV-infected patients on long-term antiretroviral therapy with suppressed viremia. Clin Infect Dis. 2018; 67(6):927–933; doi: 10.1093/cid/ciy176 29509894.

34. Caby F, Guihot A, Lambert-Niclot S, Guiguet M, Boutolleau D, Agher R, et al. Determinants of a Low CD4/CD8 Ratio in HIV-1-Infected Individuals Despite Long-term Viral Suppression. Clin Infect Dis. 2016;62(10):1297–303. doi: 10.1093/cid/ciw076 26908792.

35. Robbins GK, Cohn SE, Harrison LJ, Smeaton L, Moran L, Rusin D, et al. Characteristics associated with virologic failure in high-risk HIV-positive participants with prior failure: a post hoc analysis of ACTG 5251. HIV Clin Trials. 2016;17(4):165–72. doi: 10.1080/15284336.2016.1189754 27347650; PubMed Central PMCID: PMC5035042.

36. Heffron R, McClelland RS, Balkus JE, Celum C, Cohen CR, Mugo N, et al. Efficacy of oral pre-exposure prophylaxis (PrEP) for HIV among women with abnormal vaginal microbiota: a post-hoc analysis of the randomised, placebo-controlled Partners PrEP Study. Lancet HIV. 2017; 4(10):e449–e456. doi: 10.1016/S2352-3018(17)30110-8 28732773.

37. Curran-Everett D, Milgrom H. Post-hoc data analysis: benefits and limitations. Curr Opin Allergy Clin Immunol. 2013;13(3):223–4. doi: 10.1097/ACI.0b013e3283609831 23571411.

38. Raffi F, Jaeger H, Quiros-Roldan E, Albrecht H, Belonosova E, Gatell JM, et al. Once-daily dolutegravir versus twice-daily raltegravir in antiretroviral-naive adults with HIV-1 infection (SPRING-2 study): 96 week results from a randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2013 Nov;13(11):927–35. doi: 10.1016/S1473-3099(13)70257-3 24074642


Článek vyšel v časopise

PLOS One


2020 Číslo 1