Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion

Autoři: Tibor Janda aff001;  Magdalena Anna Lejmel aff001;  Anna Borbála Molnár aff001;  Imre Majláth aff001;  Magda Pál aff001;  Quang Trung Nguyen aff002;  Ngoc Tung Nguyen aff002;  Van Nhan Le aff002;  Gabriella Szalai aff001
Působiště autorů: Centre for Agricultural Research, Agricultural Institute, Hungarian Academy of Sciences, Martonvásár, Hungary aff001;  Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi City, Vietnam aff002;  Institute of Research and Development, Duy Tan University, Da Nang, Vietnam aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


Salicylic acid (SA) plays a role in several physiological processes in plants. Exogenously applied SA is a promising tool to reduce stress sensitivity. However, the mode of action may depend on how the treatment was performed and environmental conditions may alter the effects of SA. In the present study the physiological and biochemical effects of different modes of application (soaking seeds prior sowing; spraying leaves with 0.5 mM NaSA) were compared at normal and moderately elevated temperatures (4 h; 35°C) in Brachypodium distachyon (L.) P. Beauv. plants. While soaking the seeds stimulated plant growth, spraying caused mild stress, as indicated by the chlorophyll-a fluorescence induction parameters and changes in certain protective compounds, such as glutathione, flavonoids or antioxidant enzymes. Elevated temperature also caused an increase in the glutathione-S-transferase activity, and this increase was more pronounced in plants pre-treated with NaSA. Both seed soaking or spraying with NaSA and exposure to heat treatment at 35°C reduced the abscisic acid levels in the leaves. In contrast to abscisic acid, the jasmonic acid level in the leaves were increased by both spraying and heat treatment. The present results suggest that different modes of application may induce different physiological processes, after which plants respond differently to heat treatment. Since these results were obtained with a model plants, further experiments are required to clarify how these changes occur in crop plants, especially in cereals.

Klíčová slova:

Antioxidants – Glutathione – Heat treatment – Leaves – Plant physiology – Plant resistance to abiotic stress – Seeds – Jasmonic acid


1. Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Reg 2007; 26: 290–300.

2. Gondor OK, Pál M, Darkó E, Janda T, Szalai G. Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.). PLOS ONE 2016; 11: 8 Paper: e0160157, 18 p.

3. Klessig DF, Choi HW, Dempsey DMA. Systemic acquired resistance and salicylic acid: past, present, and future. Mol Plant-Microbe Interact. 2018; 31: 871–888. doi: 10.1094/MPMI-03-18-0067-CR 29781762

4. Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 2000; 30: 157–161.

5. Zanella L, Gismondi A, Di Marco G, Braglia R, Scuderi F, Redi EL, et al. Induction of antioxidant metabolites in Moringa oleifera callus by abiotic stresses. J Nat Prod. 2019; 82: 2379–2386. doi: 10.1021/acs.jnatprod.8b00801 31430152

6. Ghazijahani N, Hadavi E, Jeong BR. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.). Front Plant Sci. 2014; 5: doi: 10.3389/fpls.2014.00573 25400645

7. Jesus C, Meijón M, Monteiro P, Correia B, Amaral J, Escandón M, et al. Salicylic acid application modulates physiological and hormonal changes in Eucalyptus globulus under water deficit. Env Exp Bot. 2015; 118: 56–66.

8. Huang C, Wang D, Sun L, Wei L. Effects of exogenous salicylic acid on the physiological characteristics of Dendrobium officinale under chilling stress. Plant Growth Regul. 2016; 79: 199–208.

9. Krantev A, Yordanova R, Janda T, Szalai G, Popova L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol. 2008; 165: 920–931. doi: 10.1016/j.jplph.2006.11.014 17913285

10. Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, et al. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem. 2009; 47: 224–231. doi: 10.1016/j.plaphy.2008.11.007 19091585

11. Rehman H, Iqbal H, Basra SMA, Afzal I, Farooq M, Wakeel A, et al. Seed priming improves early seedling vigor, growth and productivity of spring maize. J Integr Agric. 2015; 14: 1745–1754.

12. Szalai G, Pál M, Árendás T, Janda T. Priming seed with salicylic acid increases grain yield and modifies polyamine levels in maize. Cereal Res Commun. 2016; 44: 537–548.

13. Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M. Intra and extracellular journey of the phytohormone salicylic acid. Front Plant Sci. 2019; 10: 423. doi: 10.3389/fpls.2019.00423 31057566

14. Ohashi Y, Murakami T, Mitsuhara I, Seo S. Rapid down and upward translocation of salicylic acid in tobacco plants. Plant Biotechnol. 2004; 21: 95–101.

15. Szalai G, Horgosi S, Soós V, Majláth I, Balázs E, Janda T. Salicylic acid treatment of pea seeds induces its de novo synthesis. J Plant Physiol. 2011; 168: 213–219. doi: 10.1016/j.jplph.2010.07.029 20933297

16. Gondor OK, Janda T, Soós V, Pál M, Majláth I, Adak MK, et al. Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Front Plant Sci. 2016; 7: 1447. doi: 10.3389/fpls.2016.01447 27733857

17. Dat JF, Foyer CH, Scott IM. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 1998; 118: 1455–1461. doi: 10.1104/pp.118.4.1455 9847121

18. Khan MI, Iqbal N, Masood A, Per TS, Khan NA. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav. 2013; 8: e26374. doi: 10.4161/psb.26374 24022274

19. Wang LJ, Li SH. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 2006; 170: 685–694.

20. Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, et al. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol. 2010; 10: 34. doi: 10.1186/1471-2229-10-34 20178597

21. Chai J, Liu J, Zhou J, Xing D. Mitogen-activated protein kinase 6 regulates NPR1 gene expression and activation during leaf senescence induced by salicylic acid. J Exp Bot. 2014; 65: 6513–6528 doi: 10.1093/jxb/eru369 25210078

22. Senaratna T, Touchell D, Bunns E, Dixon K. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 2000; 30: 157–161.

23. Soliman MH, Alayafi AAM, El Kelish AA, Abu-Elsaoud AM. Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Bot Stud. 2018; 59: 6. doi: 10.1186/s40529-018-0222-1 29450670

24. Klughammer C, Schreiber U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Application Notes. 2008; 1: 27–35.

25. Thomas JC, Perron M, Davies EC. Genetic responsiveness to copper in the ice plant, Mesembryanthenum crystallinum. Plant Sci. 2004; 167: 259–266.

26. Ádám A, Bestwic CS, Barna B, Mansfield JW. Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolica. Planta 1995; 197: 240–249.

27. Smith IK, Vierheller TL, Thorne CA. Assay of glutathione reductase in crude tissue homogenates using 5,5-dithiobis(2-nitrobenzoic acid). Anal Biochem. 1988; 175: 408–413. doi: 10.1016/0003-2697(88)90564-7 3239770

28. Mannervik B, Guthenberg C. Glutathione transferase (Human placenta). Meth Enzymol. 1981; 77: 231–235. doi: 10.1016/s0076-6879(81)77030-7 7329301

29. Meuwly P, Métraux JP. Ortho-anisic acid as internal standard for the simultaneous quantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves. Anal Biochem. 1993; 214: 500–505. doi: 10.1006/abio.1993.1529 8109740

30. Pál M, Horváth E, Janda T, Páldi E, Szalai G. Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiol Plant. 2005; 125: 356–364.

31. Gulyás Z, Boldizsár Á, Novák A, Szalai G, Pál M, Galiba G, et al. Central role of the flowering repressor ZCCT2 in the redox control of freezing tolerance and the initial development of flower primordia in wheat. BMC Plant Biol. 2014; 14: 91. doi: 10.1186/1471-2229-14-91 24708599

32. Janda T, Szalai G, Tari I, Páldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta. 1999; 208: 175–180.

33. Shakirova FM. Role of hormonal system in the manifestation of growth promoting and anti-stress action of salicylic acid. In Hayat S., Ahmad A. editors. Salicylic Acid, a Plant Hormone. Springer, Dordrecht, Germany; 2007. pp 69–89.

34. Janda T, Szalai G, Antunovics Z, Horváth E, Páldi E. Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica 2000; 45: 29–33.

35. Janda T, Gondor OK, Yordanova R, Szalai G, Pál M. Salicylic acid and photosynthesis: signalling and effects. Acta Physiol Plant. 2014; 36: 2537–2546.

36. Janda K, Hideg É, Szalai G, Kovács L, Janda T. Salicylic acid may indirectly influence the photosynthetic electron transport. J Plant Physiol. 2012; 169: 971–978. doi: 10.1016/j.jplph.2012.02.020 22579359

37. Herrera-Vásquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front. Plant Sci. 2015; 6: 171. doi: 10.3389/fpls.2015.00171 25852720

38. Sanchez-Casas P, Klessig D. A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol. 1994; 106: 1675–1679. doi: 10.1104/pp.106.4.1675 12232441

39. Li GZ, Peng XQ, Wei LT, Kang GZ. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 2013; 529: 321–325. doi: 10.1016/j.gene.2013.07.093 23948081

40. Zhu F, Yuan S, Wang SD, Xi DH, Lin HH. The higher expression levels of dehydroascorbate reductase and glutathione reductase in salicylic acid-deficient plants may contribute to their alleviated symptom infected with RNA viruses. Plant Signal Behav. 2011; 6: 1402–1404. doi: 10.4161/psb.6.9.16538 21852753

41. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, et al. Glutathione in plants: an integrated overview. Plant Cell Environ. 2012; 35: 454–484. doi: 10.1111/j.1365-3040.2011.02400.x 21777251

42. Ghanta S, Datta R, Bhattacharyya D, Sinha R, Kumar D, Hazra S, et al. Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress. J Plant Physiol. 2014; 171: 940–950. doi: 10.1016/j.jplph.2014.03.002 24913051

43. Wang L, Qian M, Wang R, Wang L, Zhang S. Characterization of the glutathione S-transferase (GST) gene family in Pyrus bretschneideri and their expression pattern upon superficial scald development. Plant Growth Regul. 2018; 86: 211–222.

44. Mishra B, Sangwan NS. Amelioration of cadmium stress in Withania somnifera by ROS management: active participation of primary and secondary metabolism. Plant Growth Regul. 2019; 87: 403–412.

45. Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci. 2015; 6: 462. doi: 10.3389/fpls.2015.00462 26175738

46. Serrano M, Wang B, Aryal B, Garcion C, Abou-Mansour E, Heck S, et al. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiol. 2013; 162: 1815–1821. doi: 10.1104/pp.113.218156 23757404

47. Vaca E, Behrens C, Theccanat T, Choe J-Y, Dean JV. Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana. Physiol Plant. 2017; 161: 322–338. doi: 10.1111/ppl.12602 28665551

48. Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 2012; 196: 67–76. doi: 10.1016/j.plantsci.2012.07.014 23017900

49. Martinez V, Mestre T C, Rubio F, Girones-Vilaplana A, Moreno D A, Mittler R, et al. Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci. 2016; 7: 838. doi: 10.3389/fpls.2016.00838 27379130

50. Liu HT, Liu YY, Pan QH, Yang HR, Zhan JC, Huang WD. Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot. 2006; 57: 3337–3347. doi: 10.1093/jxb/erl098 16908502

51. Dobrá J, Černý M, Štorchová H, Dobrev P, Skalák J, Jedelský PL, et al. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci. 2015; 231: 52–61. doi: 10.1016/j.plantsci.2014.11.005 25575991

52. Xu Y-H, Liao Y-C, Zhang Z, Liu J, Sun P-W, Gao Z-H, et al. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis. Sci Rep. 2016; 6: 21843. doi: 10.1038/srep21843 26902148

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden