Immunomodulatory function of the cystic fibrosis modifier gene BPIFA1


Autoři: Aabida Saferali aff001;  Anthony C. Tang aff002;  Lisa J. Strug aff005;  Bradley S. Quon aff001;  James Zlosnik aff002;  Andrew J. Sandford aff001;  Stuart E. Turvey aff002
Působiště autorů: Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada aff001;  Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada aff002;  Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America aff003;  Harvard Medical School, Boston, Massachusetts, United States of America aff004;  Program in Genetics and Genome Biology, The Hospital for Sick Children, Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227067

Souhrn

Background

Cystic fibrosis (CF) is characterized by a progressive decline in lung function due to airway obstruction, infection, and inflammation. CF patients are particularly susceptible to respiratory infection by a variety of pathogens, and the inflammatory response in CF is dysregulated and prolonged. BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are proteins expressed in the upper airways that may have innate immune activity. We previously identified polymorphisms in the BPIFA1/BPIFB1 region associated with CF lung disease severity.

Methods

We evaluated whether the BPIFA1/BPIFB1 associations with lung disease severity replicated in individuals with CF participating in the International CF Gene Modifier Consortium (n = 6,365). Furthermore, we investigated mechanisms by which the BPIFA1 and BPIFB1 proteins may modify lung disease in CF.

Results

The association of the G allele of rs1078761 with reduced lung function was replicated in an independent cohort of CF patients (p = 0.001, n = 2,921) and in a meta-analysis of the full consortium (p = 2.39x10-5, n = 6,365). Furthermore, we found that rs1078761G which is associated with reduced lung function was also associated with reduced BPIFA1, but not BPIFB1, protein levels in saliva from CF patients. Functional assays indicated that BPIFA1 and BPIFB1 do not have an anti-bacterial role against P. aeruginosa but may have an immunomodulatory function in CF airway epithelial cells. Gene expression profiling using RNAseq identified Rho GTPase signaling pathways to be altered in CF airway epithelial cells in response to treatment with recombinant BPIFA1 and BPIFB1 proteins.

Conclusions

BPIFA1 and BPIFB1 have immunomodulatory activity and genetic variation associated with low levels of these proteins may increase CF lung disease severity.

Klíčová slova:

Cystic fibrosis – Epithelial cells – Gene expression – Genetics of disease – Inflammation – Pseudomonas aeruginosa – Recombinant proteins – Saliva


Zdroje

1. Bingle L, Bingle CD. Distribution of human PLUNC/BPI fold-containing (BPIF) proteins. Biochem Soc Trans. 2011;39(4):1023–7. doi: 10.1042/BST0391023 21787341.

2. Bingle L, Wilson K, Musa M, Araujo B, Rassl D, Wallace WA, et al. BPIFB1 (LPLUNC1) is upregulated in cystic fibrosis lung disease. Histochem Cell Biol. 2012;138(5):749–58. doi: 10.1007/s00418-012-0990-8 22767025; PubMed Central PMCID: PMC3470695.

3. Bingle L, Barnes FA, Cross SS, Rassl D, Wallace WA, Campos MA, et al. Differential epithelial expression of the putative innate immune molecule SPLUNC1 in cystic fibrosis. Respir Res. 2007;8:79. doi: 10.1186/1465-9921-8-79 17988392; PubMed Central PMCID: PMC2203987.

4. Saferali A, Obeidat M, Berube JC, Lamontagne M, Bosse Y, Laviolette M, et al. Polymorphisms associated with expression of BPIFA1/BPIFB1 and lung disease severity in cystic fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):607–14. doi: 10.1165/rcmb.2014-0182OC 25574903.

5. Schaefer N, Li X, Seibold MA, Jarjour NN, Denlinger LC, Castro M, et al. The effect of BPIFA1/SPLUNC1 genetic variation on its expression and function in asthmatic airway epithelium. JCI Insight. 2019;4(8). doi: 10.1172/jci.insight.127237 30996135; PubMed Central PMCID: PMC6538329.

6. Mashbat B, Bellos E, Hodeib S, Bidmos F, Thwaites RS, Lu Y, et al. A Rare Mutation in SPLUNC1 Affects Bacterial Adherence and Invasion in Meningococcal Disease. Clin Infect Dis. 2019. doi: 10.1093/cid/ciz600 31504285.

7. Sayeed S, Nistico L, St Croix C, Di YP. Multifunctional role of human SPLUNC1 in Pseudomonas aeruginosa infection. Infect Immun. 2013;81(1):285–91. doi: 10.1128/IAI.00500-12 23132494; PubMed Central PMCID: PMC3536124.

8. Ahmad S, Tyrrell J, Walton WG, Tripathy A, Redinbo MR, Tarran R. Short Palate, Lung, and Nasal Epithelial Clone 1 has antimicrobial and antibiofilm activities against the Burkholderia cepacia complex. Antimicrob Agents Chemother. 2016;60(10):6003–12. Epub 2016/07/28. doi: 10.1128/AAC.00975-16 27458217; PubMed Central PMCID: PMC5038247.

9. Gally F, Di YP, Smith SK, Minor MN, Liu Y, Bratton DL, et al. SPLUNC1 promotes lung innate defense against Mycoplasma pneumoniae infection in mice. Am J Pathol. 2011;178(5):2159–67. Epub 2011/04/26. doi: 10.1016/j.ajpath.2011.01.026 S0002-9440(11)00135-0 [pii]. 21514430; PubMed Central PMCID: PMC3081195.

10. Liu Y, Bartlett JA, Di ME, Bomberger JM, Chan YR, Gakhar L, et al. SPLUNC1/BPIFA1 contributes to pulmonary host defense against Klebsiella pneumoniae respiratory infection. Am J Pathol. 2013;182(5):1519–31. Epub 2013/03/19. doi: 10.1016/j.ajpath.2013.01.050 23499554; PubMed Central PMCID: PMC3644735.

11. Zhou HD, Li XL, Li GY, Zhou M, Liu HY, Yang YX, et al. Effect of SPLUNC1 protein on the Pseudomonas aeruginosa and Epstein-Barr virus. Molecular and cellular biochemistry. 2008;309(1–2):191–7. Epub 2007/12/01. doi: 10.1007/s11010-007-9659-3 18049866.

12. Lukinskiene L, Liu Y, Reynolds SD, Steele C, Stripp BR, Leikauf GD, et al. Antimicrobial activity of PLUNC protects against Pseudomonas aeruginosa infection. Journal of immunology. 2011;187(1):382–90. doi: 10.4049/jimmunol.1001769 21632717; PubMed Central PMCID: PMC3119743.

13. Chu HW, Thaikoottathil J, Rino JG, Zhang G, Wu Q, Moss T, et al. Function and regulation of SPLUNC1 protein in Mycoplasma infection and allergic inflammation. Journal of immunology. 2007;179(6):3995–4002. Epub 2007/09/06. doi: 10.4049/jimmunol.179.6.3995 17785838.

14. Liu Y, Di ME, Chu HW, Liu X, Wang L, Wenzel S, et al. Increased susceptibility to pulmonary Pseudomonas infection in Splunc1 knockout mice. Journal of immunology. 2013;191(8):4259–68. doi: 10.4049/jimmunol.1202340 24048904; PubMed Central PMCID: PMC3839417.

15. Akram KM, Moyo NA, Leeming GH, Bingle L, Jasim S, Hussain S, et al. An innate defense peptide BPIFA1/SPLUNC1 restricts influenza A virus infection. Mucosal Immunol. 2018;11(1):71–81. doi: 10.1038/mi.2017.45 28513596.

16. Wright PL, Yu J, Di YP, Homer RJ, Chupp G, Elias JA, et al. Epithelial reticulon 4B (Nogo-B) is an endogenous regulator of Th2-driven lung inflammation. J Exp Med. 2010;207(12):2595–607. doi: 10.1084/jem.20100786 20975041; PubMed Central PMCID: PMC2989775.

17. Thaikoottathil JV, Martin RJ, Di PY, Minor M, Case S, Zhang B, et al. SPLUNC1 deficiency enhances airway eosinophilic inflammation in mice. Am J Respir Cell Mol Biol. 2012;47(2):253–60. doi: 10.1165/rcmb.2012-0064OC 22499853; PubMed Central PMCID: PMC3423460.

18. Di YP, Tkach AV, Yanamala N, Stanley S, Gao S, Shurin MR, et al. Dual acute proinflammatory and antifibrotic pulmonary effects of short palate, lung, and nasal epithelium clone-1 after exposure to carbon nanotubes. Am J Respir Cell Mol Biol. 2013;49(5):759–67. doi: 10.1165/rcmb.2012-0435OC 23721177; PubMed Central PMCID: PMC3931096.

19. Kim CS, Ahmad S, Wu T, Walton WG, Redinbo MR, Tarran R. SPLUNC1 is an allosteric modulator of the epithelial sodium channel. FASEB J. 2018;32(5):2478–91. doi: 10.1096/fj.201701126R 29295861; PubMed Central PMCID: PMC5901381.

20. Garland AL, Walton WG, Coakley RD, Tan CD, Gilmore RC, Hobbs CA, et al. Molecular basis for pH-dependent mucosal dehydration in cystic fibrosis airways. Proc Natl Acad Sci U S A. 2013;110(40):15973–8. doi: 10.1073/pnas.1311999110 24043776; PubMed Central PMCID: PMC3791714.

21. Hobbs CA, Blanchard MG, Alijevic O, Tan CD, Kellenberger S, Bencharit S, et al. Identification of the SPLUNC1 ENaC-inhibitory domain yields novel strategies to treat sodium hyperabsorption in cystic fibrosis airway epithelial cultures. Am J Physiol Lung Cell Mol Physiol. 2013;305(12):L990–L1001. doi: 10.1152/ajplung.00103.2013 24124190; PubMed Central PMCID: PMC3882538.

22. Larocque RC, Sabeti P, Duggal P, Chowdhury F, Khan AI, Lebrun LM, et al. A variant in long palate, lung and nasal epithelium clone 1 is associated with cholera in a Bangladeshi population. Genes Immun. 2009;10(3):267–72. doi: 10.1038/gene.2009.2 19212328.

23. Shin OS, Uddin T, Citorik R, Wang JP, Della Pelle P, Kradin RL, et al. LPLUNC1 modulates innate immune responses to Vibrio cholerae. The Journal of infectious diseases. 2011;204(9):1349–57. Epub 2011/09/09. doi: 10.1093/infdis/jir544 21900486; PubMed Central PMCID: PMC3182310.

24. Corvol H, Blackman SM, Boelle PY, Gallins PJ, Pace RG, Stonebraker JR, et al. Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat Commun. 2015;6:8382. Epub 2015/09/30. doi: 10.1038/ncomms9382 26417704; PubMed Central PMCID: PMC4589222.

25. Taylor C, Commander CW, Collaco JM, Strug LJ, Li W, Wright FA, et al. A novel lung disease phenotype adjusted for mortality attrition for cystic fibrosis genetic modifier studies. Pediatr Pulmonol. 2011;46(9):857–69. doi: 10.1002/ppul.21456 21462361; PubMed Central PMCID: PMC3130075.

26. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010:Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

27. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal. 2011;17:10–2.

28. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. doi: 10.1186/gb-2013-14-4-r36 23618408; PubMed Central PMCID: PMC4053844.

29. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. doi: 10.1038/nmeth.1923 22388286; PubMed Central PMCID: PMC3322381.

30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. doi: 10.1093/bioinformatics/btp352 19505943; PubMed Central PMCID: PMC2723002.

31. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8 25516281; PubMed Central PMCID: PMC4302049.

32. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007 25605792; PubMed Central PMCID: PMC4402510.

33. Foroushani AB, Brinkman FS, Lynn DJ. Pathway-GPS and SIGORA: identifying relevant pathways based on the over-representation of their gene-pair signatures. PeerJ. 2013;1:e229. doi: 10.7717/peerj.229 24432194; PubMed Central PMCID: PMC3883547.

34. Xia J, Gill EE, Hancock RE. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc. 2015;10(6):823–44. doi: 10.1038/nprot.2015.052 25950236.

35. Campos MA, Abreu AR, Nlend MC, Cobas MA, Conner GE, Whitney PL. Purification and characterization of PLUNC from human tracheobronchial secretions. Am J Respir Cell Mol Biol. 2004;30(2):184–92. Epub 2003/08/16. doi: 10.1165/rcmb.2003-0142OC [pii]. 12920053.

36. Courtney JM, Ennis M, Elborn JS. Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros. 2004;3(4):223–31. doi: 10.1016/j.jcf.2004.06.006 15698939.

37. Saferali A, Turvey SE, Sandford AJ. Cystic Fibrosis: Modifier Genes. eLS. Chichester, UK: John Wiley & Sons, Ltd; 2016.

38. Bingle L, Cross SS, High AS, Wallace WA, Devine DA, Havard S, et al. SPLUNC1 (PLUNC) is expressed in glandular tissues of the respiratory tract and in lung tumours with a glandular phenotype. J Pathol. 2005;205(4):491–7. doi: 10.1002/path.1726 15685591.

39. Bartlett JA, Hicks BJ, Schlomann JM, Ramachandran S, Nauseef WM, McCray PB Jr. PLUNC is a secreted product of neutrophil granules. J Leukoc Biol. 2008;83(5):1201–6. Epub 2008/02/05. doi: 10.1189/jlb.0507302 18245229.

40. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science. 2002;298(5599):1790–3. doi: 10.1126/science.298.5599.1790 12459590.

41. Ghafouri B, Kihlstrom E, Tagesson C, Lindahl M. PLUNC in human nasal lavage fluid: multiple isoforms that bind to lipopolysaccharide. Biochim Biophys Acta. 2004;1699(1–2):57–63. doi: 10.1016/j.bbapap.2004.01.001 15158712.

42. Saferali A, Turvey ST, Sandford AJ. Cystic Fibrosis: Modifier Genes. Wiley Online Library. 2016. doi: 10.1002/9780470015902.a0020233

43. Ou C, Sun Z, Zhang H, Xiong W, Ma J, Zhou M, et al. SPLUNC1 reduces the inflammatory response of nasopharyngeal carcinoma cells infected with the EB virus by inhibiting the TLR9/NF-kappaB pathway. Oncol Rep. 2015;33(6):2779–88. doi: 10.3892/or.2015.3913 25891128.

44. Ridley AJ. Rho GTPase signalling in cell migration. Curr Opin Cell Biol. 2015;36:103–12. doi: 10.1016/j.ceb.2015.08.005 26363959; PubMed Central PMCID: PMC4728192.

45. Gambardella L, Vermeren S. Molecular players in neutrophil chemotaxis—focus on PI3K and small GTPases. J Leukoc Biol. 2013;94(4):603–12. doi: 10.1189/jlb.1112564 23667166.


Článek vyšel v časopise

PLOS One


2020 Číslo 1