Morphometric study of the diaphragmatic surface of the liver in the human fetus

Autoři: Monika Paruszewska-Achtel aff001;  Małgorzata Dombek aff001;  Mateusz Badura aff001;  Gabriela Elminowska-Wenda aff001;  Maria Dąbrowska aff001;  Magdalena Grzonkowska aff001;  Mariusz Baumgart aff001;  Anna Szpinda-Barczyńska aff002;  Michał Szpinda aff001
Působiště autorů: Department of Normal Anatomy, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, The Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland aff001;  Department of Orthodontics, Medical University of Warsaw, Warszawa, Poland aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


This study aimed to examine age-specific reference intervals and growth dynamics of the best fit for liver dimensions on the diaphragmatic surface of the fetal liver. The research material consisted of 69 human fetuses of both sexes (32♂, 37♀) aged 18–30 weeks. Using methods of anatomical dissection, digital image analysis and statistics, a total of 10 measurements and 2 calculations were performed. No statistical significant differences between sexes were found (p>0.05). The parameters studied displayed growth models that followed natural logarithmic functions. The mean value of the transverse–to–vertical diameter ratio of the liver throughout the analyzed period was 0.71±0.11. The isthmic ratio decreased significantly from 0.81±0.12 in the 18–19th week to 0.62±0.06 in the 26–27th week, and then increased to 0.68±0.11 in the 28–30th week of fetal life (p<0.01). The morphometric parameters of the diaphragmatic surface of the liver present age-specific reference data. No sex differences are found. The transverse–to–vertical diameter ratio supports a proportionate growth of the fetal liver. Quantitative anatomy of the growing liver may be of relevance in both the ultrasound monitoring of the fetal development and the early detection of liver anomalies.

Klíčová slova:

anémia – diabetes mellitus – Fetuses – Hematopoiesis – Image analysis – Morphometry – Ultrasound imaging – Fetal development


1. Hata T, Aoki S, Hata K, Miyazaki K, Akahane M, Mochizuki T. Three-dimensional ultrasonographic assessment of fetal development. Obstet Gynecol. 1998;2(91):218–223.

2. Hata T, Aoki S, Manabe A, Hata K, Miyazaki K. Three-dimensional ultrasonography in the first trimester of human pregnancy. Hum Reprod. 1997;12(8):1800–1804. doi: 10.1093/humrep/12.8.1800 9308815

3. Merz E, Bahlmann F, Weber G. Volume scanning in the evaluation of fetal malformations: a new dimension in prenatal diagnosis. Ultrasound Obstet Gynecol. 1995;5:222–227. doi: 10.1046/j.1469-0705.1995.05040222.x 7600201

4. Merz E, Weber G, Bahlmann F, Miric-Tesanic D. Application of transvaginal and abdominal three-dimensional ultrasound for the detection or exclusion of malformation of the fetal face. Ultrasound Obstet Gynecol. 1997;9(4):237–243. doi: 10.1046/j.1469-0705.1997.09040237.x 9168575

5. Lee W, Comstock CH, Kirk JS, Smith RS, Monck JW, Deenadayalu R, et al. Birth weight prediction by three-dimensional ultrasonographic volumes of the fetal thigh and abdomen. J Ultrasound Med. 1997;16(12):799–805. doi: 10.7863/jum.1997.16.12.799 9401993

6. Lee W, Deter RL, Ebersole JD, Huang R, Blanckaert K, Romero R. Birth weight prediction by three-dimensional ultrasonography: fractional limb volume. J Ultrasound Med. 2001;20(12):1283–1292. doi: 10.7863/jum.2001.20.12.1283 11762540

7. Lee W, Balasubramaniam M, Deter RL, Yeo L, Hassan SS, Gotsch F, et al. New fetal weight estimation models using fractional limb volume. Ultrasound Obstet Gynecol. 2009;34(5):556–565. doi: 10.1002/uog.7327 19725080

8. Archie JG, Collins JS, Lebel RR. Quantitative standards for fetal and neonatal autopsy. Am J Clin Pathol. 2006;126(2):256–265. doi: 10.1309/FK9D-5WBA-1UEP-T5BB 16891202

9. Albay S, Mehmet A, Malas MA, Cetin E, Cankara N, Karahan N. Development of the liver during the fetal period. Saudi Med J. 2005;26(11):1710–1715. 16311653

10. Jaiswal A, Kaushik A, Pant J, Singh AK, Pant MK. Fetal liver morphometry at different crown rump lengths. JAS 2018;26(1):24–27.

11. Hosapatna M, Souza AD, Ankolekar VH. Development of the Gall Bladder, and Caudate and Quadrate Lobes of the Liver: A Fetal Morphometric Study. Kurume Med J. 2019;16;65(2):31–35. doi: 10.2739/kurumemedj.MS652003 30449825

12. Hubbard AM. Ultrafast fetal MRI and prenatal diagnosis. Seminars Ped Sur. 2003;12(3):143–153.

13. Weiner S. The isoimmunized pregnancy. Perinatal Medicine Management of the High Risk Fetus and Neonate. 2nd ed. Baltimore: Williams and Wilkins; 1978. pp. 267–289.

14. Hedrick HL, Danzer E, Merchant A, Bebbington MW, Zhao H, Flake AW, Liver position and lung-to-head ratio for prediction of extracorporeal membrane oxygenation and survival in isolated left congenital diaphragmatic hernia. Am J Obstet Gynecol. 2007;197(4):1–4.

15. Silver RM. Fetal death. Obstet Gynecol. 2007;109(1):153–167. doi: 10.1097/01.AOG.0000248537.89739.96 17197601

16. Toprak E, Bozkurt M, Karasu Y. Correlation between the fetal liver length and crown-rump length during the first trimester screening. JAREM 2015;5: 60–63.

17. Fleischer AC, Manning FA, Jeanty P, Romero R. Sonography principals of obstetrics and gynecology and Clinical Applications. In: Turkish Yuksel A. editor. Ankara, Turkey: 5th press; 2000. pp. 109–130, 411–432.

18. Aviram R, Shpan DK, Markovitch O, Fishman A, Tepper R. Three-dimensional first trimester fetal volumetry: comparison with crown rump length. Early Hum Dev. 2004; 80(1):1–5. doi: 10.1016/j.earlhumdev.2004.02.005 15363834

19. Breeze ACG, Gallagher FA, Lomas DJ, Smith GCS, Lees CC. Postmortem fetal organ volumetry using magnetic resonance imaging and comparison to organ weights at conventional autopsy. Ultrasound Obstet Gynecol. 2008;31(2):187–193. doi: 10.1002/uog.5199 18092338

20. Iffy L, Jakobovits A, Westlake W, Wingate MB, Caterini H, Kanofsky P, et. al. Early intrauterine development: I. The rate of growth of Caucasian embryos and fetuses between the 6th and 20th weeks of gestation. Pediatrics. 1975;56(2):173–186. 1161367

21. Paruszewska-Achtel M. Morphometric study of the liver in human fetuses. Doctoral Thesis, Nicolaus Copernicus University Bydgoszcz. 2014.

22. Szpinda M, Baumgart M, Szpinda A, Woźniak A, Małkowski B, Wiśniewski M, et. al. Cross-sectional study of the ossification center of the C1–S5 vertebral bodies. Surg Radiol Anat. 2013;35:395–402. doi: 10.1007/s00276-012-1045-5 23192240

23. Szpinda M, Baumgart M, Szpinda A, Woźniak A, Mila-Kierzenkowska C, Dombek M, et. al. Morphometric study of the T6 vertebra and its three ossification centers in the human fetus. Surg Radiol Anat. 2013;35:901–916. doi: 10.1007/s00276-013-1107-3 23543237

24. Szpinda M, Daroszewski M, Woźniak A, Szpinda A, Mila-Kierzenkowska C. Tracheal dimensions in human fetuses—an anatomical, digital and statistical study. Surg Radiol Anat. 2012;34:317–323. doi: 10.1007/s00276-011-0878-7 21984196

25. Szpinda M, Paruszewska-Achtel M, Woźniak A, Badura M, Mila-Kierzenkowska C, Wiśniewski M. Three-dimensional growth dynamics of the liver in the human fetus. Surg Radiol Anat. 2015;37:439–448. doi: 10.1007/s00276-015-1437-4 25645545

26. Szpinda M, Paruszewska-Achtel M, Woźniak A, Mila-Kierzenkowska C, Elminowska-Wenda G, Dombek M, et al. Volumetric growth of the liver in the human fetus. An anatomical, hydrostatic, and statistical study. Hindawi Publishing Corporation. BioMed Research International. 2015;2015:1–8.

27. Szpinda M, Siedlaczek W, Szpinda A, Woźniak A, Mila-Kierzenkowska C, Wiśniewski M. Volumetric growth of the lungs in human fetuses: an anatomical, hydrostatic and statistical study. Surg Radiol Anat,. 2014;36(8):813–820. doi: 10.1007/s00276-014-1269-7 24535661

28. Szpinda M, Baumgart M, Szpinda A, Woźniak A, Mila-Kierzenkowska C. Cross-sectional study of the neural ossification centers of vertebrae C1–S5 in the human fetus. Surg Radiol Anat. 2013;35:701–711. doi: 10.1007/s00276-013-1093-5 23455365

29. Szpinda M, Daroszewski M, Woźniak A, Szpinda A, Flisiŗski P, Dombek M, et al. Novel patterns for the growing main bronchi in the human fetus–an anatomical, digital and statistical study. Surg Radiol Anat. 2013;36(1):55–65. doi: 10.1007/s00276-013-1145-x 23778946

30. Vintzileos AM, Campbell WA, Storlazzi E, Mirochnick MH, Escoto DT, Nochimson DJ. Fetal liver ultrasound measurement in isoimmunized pregnancies. Obstet Gynecol. 1986;68(2):162–167. 3090490

31. Roberts AB, Mitchell JM, Pattison NS. Fetal liver length in normal and isoimmunized pregnancies. Am J Obstet Gynecol. 1989;161(1):42–46. doi: 10.1016/0002-9378(89)90229-9 2665498

32. Chang FM, Hsu KF, Ko HC, Yao BL, Chang CH, Yu CH, et al. Tree-dimensional ultrasound assessment of fetal liver volume in normal pregnancy. A comparison of reproducibility with two-dimensional ultrasound and a search for a volume constant. Ultrasound Med Biol. 1997;23(3):381–389. doi: 10.1016/s0301-5629(96)00218-9 9160906

33. Phatihattakorn C, Ruangvutilert P, Sansaneevithayakul P, Boriboonhirunsarn D. Reference centile chart for fetal liver length of Thai fetuses. J Med Assoc Thai. 2004; 87(7):750–754. 15521228

34. Tongprasert F, Srisupundit K, Luewan S, Tongsong T. Normal length of the fetal liver from 14 to 40 weeks of gestational age. J Clinic Ultra. 2010;39(2):274–77.

35. Paruszewska-Achtel M, Dombek M, Badura M, Elminowska-Wenda GM, Wiśniewski M, Szpinda M. Quantitative anatomy of the liver visceral surface in the human fetus. Adv Clin Exp Med. 2018;27(8):1131–1139. doi: 10.17219/acem/74375 29963782

36. Dimaano NC, Rivera L. Comparison of fetal liver length of diabetic and non-diabetic Filipino mothers at 14–40 weeks’ gestational age. Ultrasound in Obsterics & Gynecology. 2017;50(1):257–399.

37. Anderson NG, Notley E, Graham P, McEwing R. Reproducibility of sonographic assessment of fetal liver length in diabetic pregnancies. Ultrasound Obstet Gynecol. 2008;31(5):529–534. doi: 10.1002/uog.5298 18432599

38. Mirghani H, Zayed R, Thomas L, Agarwal M. Gestational diabetes mellitus: fetal liver length measurements between 21 and 24 weeks' gestation. J Clin Ultrasound. 2007;35(1):34–37. doi: 10.1002/jcu.20294 17152075

39. Roberts AB, Mitchell J, Lake Y, Pattison NS. Ultrasonographic surveillance in red blood cell alloimmunization. Am J Obstet Gynecol. 2001;184(6):1251–1255. doi: 10.1067/mob.2001.112975 11349197

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden