The effect of long-term brine discharge from desalination plants on benthic foraminifera


Autoři: Chen Kenigsberg aff001;  Sigal Abramovich aff001;  Orit Hyams-Kaphzan aff002
Působiště autorů: Department of Geology and Environmental Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel aff001;  Geological Survey of Israel, Jerusalem, Israel aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227589

Souhrn

Desalination plants along the Mediterranean Israeli coastline currently provide ~587 million m3 drinking water/year, and their production is planned to increase gradually. Production of drinking water is accompanied by a nearly equivalent volume of brine discharge with a salinity of ~80 that is twice the normal, which can potentially impact marine ecosystems. The goal of this study was to examine whether benthic foraminifera, a known sensitive marine bio-indicator, are affected by this brine-discharge. For that, we investigated the seasonal and cumulative effect of brine discharges of three operating desalination facilities along the Israeli coast. Those facilities are located in Ashkelon, Hadera, and Sorek. The brine-discharge in the first two desalination plants is associated with thermal pollution, while the Sorek facility entails increased salinity but no thermal pollution. In four seasonal cruises during one year, we collected surface sediment samples in triplicates by grabs from the outfall (near the discharge site), and from a non-impacted control station adjacent to each study site. Our results highlight that the most robust responses were observed at two out of three desalination shallow sites (Ashkelon and Hadera), where the brine was discharged directly from a coastal outfall and was accompanied with thermal pollution from the nearby power plants. The total foraminiferal abundance and diversity were, generally, lower near the outfalls, and increased towards the control stations. Moreover, changes in the relative abundances of selected species indicate their sensitivity to the brine discharge. The most noticeable response to exclusively elevated salinity was detected at Sorek discharge site, where we observed a sharp decline in organic-cemented agglutinated benthic foraminifera, suggesting that these are particularly sensitive to elevated salinity. The herein study contribute new insights into the effect of brine discharge from desalination plants, on benthic foraminifera, and propose a scientifically-based ecological monitoring tool that can help stakeholders.

Klíčová slova:

Ammonia – Desalination – Pollution – Salinity – Sea water – Sediment – Species diversity – Spring


Zdroje

1. Shenvi SS, Isloor AM, Ismail AF. A review on RO membrane technology: Developments and challenges. Desalination. Elsevier B.V.; 2015;368: 10–26. doi: 10.1016/j.desal.2014.12.042

2. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. Elsevier Ltd; 2009;43: 2317–2348. doi: 10.1016/j.watres.2009.03.010 19371922

3. Becker N. Water Policy in Israel: Context, Issues and Options (Global Issues in Water Policy). [Internet]. Becker N, editor. Dordrecht: Springer Netherlands; 2013. doi: 10.1007/978-94-007-5911-4

4. Israel Water Sector [Internet]. 2018 p. http://www.water.gov.il/HEBREW/PLANNING-AND-DEVELO. Available: http://www.water.gov.il/Hebrew/WaterResources/Desalination/Pages/default.aspx

5. Fritzmann C, Löwenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination. Desalination. 2007;216: 1–76. doi: 10.1016/j.desal.2006.12.009

6. Missimer TM, Jones B, Maliva RG, editors. Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities [Internet]. Cham: Springer International Publishing; 2015. doi: 10.1007/978-3-319-13203-7

7. Petersen KL, Frank H, Paytan A, Bar-Zeev E. Impacts of Seawater Desalination on Coastal Environments. Sustainable Desalination Handbook. Elsevier; 2018. pp. 437–463. doi: 10.1016/B978-0-12-809240-8.00011-3

8. Roberts DA, Johnston EL, Knott NA. Impacts of desalination plant discharges on the marine environment: A critical review of published studies. Water Res. 2010;44: 5117–5128. doi: 10.1016/j.watres.2010.04.036 20633919

9. Einav R., Lokiec F. Environmental aspects of a desalination plant in Ashkelon. Desalination. 2003;156: 79–85.

10. Einav R, Harussi K, Perry D. The footprint of the desalination processes on the environment. Desalination. 2003; 156, 79–85.

11. Gacia E, Invers O, Manzanera M, Ballesteros E, Romero J. Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow. Estuar Coast Shelf Sci. 2007;72: 579–590. doi: 10.1016/j.ecss.2006.11.021

12. Bleninger T, Jirka GH. Modelling and environmentally sound management of brine discharges from desalination plants. Desalination. 2008;221: 585–597. doi: 10.1016/j.desal.2007.02.059

13. Hyams-Kaphzan O, Almogi-Labin A, Sivan D, Benjamini C. Benthic foraminifera assemblage change along the southeastern Mediterranean inner shelf due to fall-off of Nile-derived siliciclastics. Neues Jahrb für Geol und Paläontologie—Abhandlungen. 2008;248: 315–344. doi:https://doi.org/10.1127/0077-7749/2008/0248-0315

14. Alve E. Benthic foraminiferal responses to estuarine pollution: a review. J Foraminifer Res. 1995;25: 190–203. doi: 10.2113/gsjfr.25.3.190

15. Jorissen F, de Stigter HC, Widmark JGV. A conceptual model explaining benthic foraminiferal microhabitats. Mar Micropaleontol. 1995;26: 3–15.

16. Geslin E, Debenay J-P, Duleba W, Bonetti C. Morphological abnormalities of foraminiferal tests in Brazilian environments: comparison between polluted and non-polluted areas. Mar Micropaleontol. 2002;45: 151–168. doi: 10.1016/S0377-8398(01)00042-1

17. Saraswat R, Kurtarkar SR, Mazumder a., Nigam R. Foraminifers as indicators of marine pollution: A culture experiment with Rosalina leei. Mar Pollut Bull. 2004;48: 91–96. doi: 10.1016/S0025-326X(03)00330-8 14725879

18. Frontalini F, Coccioni R. Benthic foraminifera as bioindicators of pollution: A review of Italian research over the last three decades. Revue de Micropaleontologie. 2011. pp. 115–127. doi: 10.1016/j.revmic.2011.03.001

19. Schönfeld J, Alve E, Geslin E, Jorissen F, Korsun S, Spezzaferri S. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies. Mar Micropaleontol. 2012;94–95: 1–13. doi: 10.1016/j.marmicro.2012.06.001

20. Murray JW, Alve E. Natural dissolution of modern shallow water benthic foraminifera: taphonomic effects on the palaeoecological record. Palaeogeogr Palaeoclimatol Palaeoecol. 1999;146: 195–209. doi: 10.1016/S0031-0182(98)00132-1

21. Murray JW, Alve E. Benthic foraminifera as indicators of environmental change: estuaries, shelf and upper slope. 2002.

22. Almogi-Labin A, Perelis-Grossovicz L, Raab M. Living Ammonia from a hypersaline inland pool, Dead Sea area, Israel. J Foraminifer Res. 1992;22: 257–266. doi: 10.2113/gsjfr.22.3.257

23. Abduljamiu Olalekan A, Kaminski MA, Lameed B. Benthic Foraminifera in Hypersaline Salwa Bay (saudi Arabia): an Insight Into Future Climate Change in the Gulf Region? J Foraminifer Res. 2018;48: 29–40.

24. Murray JW. The Foraminiferida of the Persian Gulf. J Nat Hist. 1970;4: 55–67. doi: 10.1080/00222937000770061

25. Murrat JW. The foraminifera of the hypersaline Abu-Dhabi lagoon, perrsian gulf. Lethaia. 1970;3: 51–68. doi: 10.1111/j.1502-3931.1970.tb01263.x

26. Arieli RN, Almogi-Labin A, Abramovich S, Herut B. The effect of thermal pollution on benthic foraminiferal assemblages in the Mediterranean shoreface adjacent to Hadera power plant (Israel). Mar Pollut Bull. 2011;62: 1002–1012. doi: 10.1016/j.marpolbul.2011.02.036 21420692

27. Titelboim D, Almogi-Labin A, Herut B, Kucera M, Schmidt C, Hyams-Kaphzan O, et al. Selective responses of benthic foraminifera to thermal pollution. Mar Pollut Bull. 2016;105: 324–336. doi: 10.1016/j.marpolbul.2016.02.002 26895595

28. Frank H, Fussmann KE, Rahav E, Bar Zeev E. Chronic effects of brine discharge form large-scale seawater reverse osmosis desalination facilities on benthic bacteria. Water Res. 2019;151: 478–487. doi: 10.1016/j.watres.2018.12.046 30641463

29. Grossowicz M, Sisma-Ventura G, Gal G. Using Stable Carbon and Nitrogen Isotopes to Investigate the Impact of Desalination Brine Discharge on Marine Food Webs. Front Mar Sci. 2019;6. doi: 10.3389/fmars.2019.00142

30. Abramson K, Shafir V. A Monitoring Program for the Marine and Coastal Environment Near Rotenberg Power Plant and VID Desalination Factory. 2015 report. Ashkelon; 2016. doi:RELP-4-2016

31. Ben Yosef D, Shafir V. A Monitoring Program for the Marine and Coastal Environment Near Rotenberg Power Plant and VID Desalination Factory. 2016 report. Israel Electric Corporation. Report RELP-3-2017. Ashkelon; 2017.

32. Ben Yosef D, Shafir V. A Monitoring Program for the Marine and Coastal Environment Near Orot Rabin Power Plant and H2ID Desalination Factory. Israel Electric Corporation. Report RELP-2-2017. Hadera; 2017.

33. Kress N, Shoham-frider E, Lubinevsky H. A Monitoring Program for the Marine and Coastal Environment Near he source of the water desalination plant Palmachim and Sorek Final report of the 2017 findings. Ltd Research Limnological & Oceanographic. 2017.

34. Henri E. Gaudette WRF. An Inexpensive Titration Method for the Determination of Organic Carbon in Recent Sediments. SEPM J Sediment Res. 1974;Vol. 44. doi: 10.1306/74D729D7-2B21-11D7-8648000102C1865D

35. Brenner IB, Watson AE, Russell GM, Goncalves M. A new approach to the determination of the major and minor constituents in silicate and phosphate rocks. Chem Geol. 1980;28: 321–330. doi: 10.1016/0009-2541(80)90052-2

36. Yu Z, Robinson P, McGoldrick P. An Evaluation of Methods for the Chemical Decomposition of Geological Materials for Trace Element Determination using ICP-MS. Geostand Geoanalytical Res. 2001;25: 199–217. doi: 10.1111/j.1751-908X.2001.tb00596.x

37. Parent B, Barras C, Jorissen F. An optimised method to concentrate living (Rose Bengal-stained) benthic foraminifera from sandy sediments by high density liquids. Mar Micropaleontol. 2018;144: 1–13. doi: 10.1016/j.marmicro.2018.07.003

38. Cimerman F, Langer M. Mediterranean Foraminifera. 1991.

39. Hottinger L, Reiss Z (Zeev), Halicz E. Recent foraminiferida from the Gulf of Aqaba, Red Sea / Lukas Hottinger, Elwira Halicz, and Zeev Reiss. 1993.

40. Loeblich AR, Tappan H. Foraminiferal Genera and their Classification. Van Nostrand Reinhold, New York. 1987.

41. Loeblich AR, Tappan H. Foraminifera of the Sahul shelf and Timor Sea. Cushman Foundation for Foraminiferal Research. Special Publication 31. 1994.

42. Hyams O. Benthic foraminifera from the Mediterranean inner shelf, Israel. 2000. M.Sc. Thesis. 229 p.

43. Milker Y, Schmiedl G. A taxonomic guide to modern benthic shelf foraminifera of the western Mediterranean Sea. 2012.

44. Hayward BR, Encarnação SC da(University of A, Le Coze FEB, Mamo BU of HK, Vachard D des S et T de L. WoRMS-World Register of Marine Species [Internet]. 2019. Available: http://www.marinespecies.org/index.php

45. Clarke KR, Warwick RM. Change in marine communities an approach to statistical analysis and interpretation 2nd Edition. 2001.

46. Clarke KR, Gorley RN. PRIMER v6: user manual/ tutorial. 2006.

47. Clarke KR, Somerfield PJ, Gorley RN. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Bio Ecol. 2008;366: 56–69. doi: 10.1016/j.jembe.2008.07.009

48. Sivan D, Almogi-Labin A. Environmental/ecologi-cal characterization of sediments and microfauna of theinner shelf offshore, Israel. Geological Survey of Israel. Report ES/32/99, 41 pp. 1999.

49. Nir Y’ acov. Recent Sediments of the Israel Mediterranean Continental Shelf and Slope. University of Gothenburg, Sweden. 1984.

50. Inman DL, Jenkins SA. The Nile Littoral Cell and Man’s Impact on the Coastal Zone of the Southeastern Mediterranean. Coastal Engineering 1984. New York, NY: American Society of Civil Engineers; 1985. pp. 1600–1617. doi: 10.1061/9780872624382.110

51. Almagor G, Gill D, Perath I. Marine Sand Resources Offshore Israel. Mar Georesources Geotechnol. 2000;18: 1–42. doi: 10.1080/10641190009353781

52. Avnaim-Katav S, Hyams-Kaphzan O, Milker Y, Almogi-Labin A. Bathymetric zonation of modern shelf benthic foraminifera in the Levantine Basin, eastern Mediterranean Sea. J Sea Res. 2015;99: 97–106. doi: 10.1016/j.seares.2015.02.006

53. Hyams-Kaphzan O, Almogi-Labin A, Benjamini C, Herut B. Natural oligotrophy vs. pollution-induced eutrophy on the SE Mediterranean shallow shelf (Israel): Environmental parameters and benthic foraminifera. Mar Pollut Bull. 2009;58: 1888–1902. doi: 10.1016/j.marpolbul.2009.07.010 19665735

54. Tadir R, Benjamini C, Almogi-Labin A, Hyams-Kaphzan O. Temporal trends in live foraminiferal assemblages near a pollution outfall on the Levant shelf. Mar Pollut Bull. 2017;117: 50–60. doi: 10.1016/j.marpolbul.2016.12.045 28132730

55. Schmidt C, Morard R, Almogi-Labin A, Weinmann AE, Titelboim D, Abramovich S, et al. Recent Invasion of the Symbiont-Bearing Foraminifera Pararotalia into the Eastern Mediterranean Facilitated by the Ongoing Warming Trend. Bianchi CN, editor. PLoS One. 2015;10: e0132917. doi: 10.1371/journal.pone.0132917 26270964

56. Debenay J-P, Bénéteau E, Zhang J, Stouff V, Geslin E, Redois F, et al. Ammonia beccarii and Ammonia tepida (Foraminifera): morphofunctional arguments for their distinction. Mar Micropaleontol. 1998;34: 235–244. doi: 10.1016/S0377-8398(98)00010-3

57. Long ER, Macdonald DD, Smith SL, Calder FD. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage. 1995;19: 81–97. doi: 10.1007/BF02472006

58. Hyams-Kaphzan O, Almogi-Labin A, Benjamini C, Herut B. Natural oligotrophy vs. pollution-induced eutrophy on the SE Mediterranean shallow shelf (Israel): Environmental parameters and benthic foraminifera. Mar Pollut Bull. 2009;58: 1888–1902. doi: 10.1016/j.marpolbul.2009.07.010 19665735


Článek vyšel v časopise

PLOS One


2020 Číslo 1