Accuracy of intraocular lens power calculation formulas using a swept-source optical biometer

Autoři: Se Young Kim aff001;  Seung Hyun Lee aff001;  Na Rae Kim aff001;  Hee Seung Chin aff001;  Ji Won Jung aff001
Působiště autorů: Department of Ophthalmology and Inha Vision Science Laboratory, Inha University School of Medicine, Incheon, South Korea aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article



To compare the accuracy of the five commonly used intraocular lens (IOL) calculation formulas integrated to a swept-source optical biometer, the IOLMaster 700, and evaluate the extent of bias within each formula for different ocular biometric measurements.


The study included patients undergoing cataract surgery with a ZCB00 IOL implant, using IOLMaster 700 optical biometry. A single eye per patient was included in the final analysis for a total of 324 cases. The SRK/T, Hoffer Q, Haigis, Holladay 2, and Barrett Universal II formulas were evaluated. The correlations between the refractive prediction errors calculated using the five formulas and ocular dimensions such as axial length (AL), anterior chamber depth (ACD), corneal power, and lens thickness (LT) were analyzed.


There were significant differences in the median absolute error predicted by the five formulas after the adjustment for mean refractive prediction errors to zero (P = 0.038). The Barrett Universal II formula had the lowest median absolute error (0.263) and resulted in a higher percentage of eyes with prediction errors within ±0.50 D, ±0.75 D, and ±1.00 D (all P < 0.050). The refractive errors predicted by only the Barrett formula showed no significant correlation with the ocular dimensions: AL, ACD, corneal power, and LT.


Overall, the Barrett Universal II formula, integrated to a swept-source optical biometer had the lowest prediction error and appeared to have the least bias for different ocular biometric measurements for the ZCB00 IOL.

Klíčová slova:

Biometrics – Biostatistics – Cataract surgery – Cornea – Eye lens – Eyes – Surgeons – Surgical and invasive medical procedures


1. Ferrer-Blasco T, Dominguez-Vicent A, Esteve-Taboada JJ, Aloy MA, Adsuara JE, Montes-Mico R. Evaluation of the repeatability of a swept-source ocular biometer for measuring ocular biometric parameters. Graefes Arch Clin Exp Ophthalmol. 2017;255: 343–349. doi: 10.1007/s00417-016-3555-z 27900479

2. Jung S, Chin HS, Kim NR, Lee KW, Jung JW. Comparison of repeatability and agreement between swept-source optical biometry and dual-scheimpflug topography. J Ophthalmol. 2017;2017: 1516395. doi: 10.1155/2017/1516395 29375908

3. Savini G, Hoffer KJ, Shammas HJ, Aramberri J, Huang J, Barboni P. Accuracy of a new swept-source optical coherence tomography biometer for IOL power calculation and comparison to IOLMaster. J Refract Surg. 2017;33: 690–695. doi: 10.3928/1081597X-20170721-05 28991337

4. Srivannaboon S, Chirapapaisan C, Chonpimai P, Loket S. Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg. 2015;41: 2224–2232. doi: 10.1016/j.jcrs.2015.03.019 26703299

5. Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993;19: 700–712; errata 1994;20:677 and 2007;33:2–3. doi: 10.1016/s0886-3350(13)80338-0 8271165

6. Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refract Surg. 2000;26: 1233–1237. doi: 10.1016/s0886-3350(00)00376-x 11008054

7. Olsen T, Thim K, Corydon L. Accuracy of the newer generation intraocular lens power calculation formulas in long and short eyes. J Cataract Refract Surg. 1991;17: 187–193. doi: 10.1016/s0886-3350(13)80249-0 2040976

8. Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL. Formula choice: Hoffer Q, holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry. J Cataract Refract Surg. 2011;37: 63–71. doi: 10.1016/j.jcrs.2010.07.032 21183100

9. Gavin EA, Hammond CJ. Intraocular lens power calculation in short eyes. Eye (Lond). 2008;22: 935–938.

10. Bang S, Edell E, Yu Q, Pratzer K, Stark W. Accuracy of intraocular lens calculations using the IOLMaster in eyes with long axial length and a comparison of various formulas. Ophthalmology. 2011;118: 503–506. doi: 10.1016/j.ophtha.2010.07.008 20884057

11. Chen C, Xu X, Miao Y, Zheng G, Sun Y, Xu X. Accuracy of Intraocular Lens Power Formulas Involving 148 Eyes with Long Axial Lengths: A Retrospective Chart-Review Study. J Ophthalmol. 2015;2015: 976847. doi: 10.1155/2015/976847 26793392

12. Chong EW, Mehta JS. High myopia and cataract surgery. Curr Opin Ophthalmol. 2016; 27: 45–50. doi: 10.1097/ICU.0000000000000217 26569522

13. Wang JK, Hu CY, Chang SW. Intraocular lens power calculation using the IOLMaster and various formulas in eyes with long axial length. J Cataract Refract Surg. 2008;34: 262–267. doi: 10.1016/j.jcrs.2007.10.017 18242451

14. Gokce SE, Zeiter JH, Weikert MP, Koch DD, Hill W, Wang L. Intraocular lens power calculations in short eyes using 7 formulas. J Cataract Refract Surg. 2017;43: 892–897. doi: 10.1016/j.jcrs.2017.07.004 28823434

15. Ladas JG, Siddiqui AA, Devgan U, Jun AS. A 3-D "super surface" combining modern intraocular lens formulas to generate a "super formula" and maximize accuracy. JAMA Ophthalmol. 2015;133: 1431–1436. doi: 10.1001/jamaophthalmol.2015.3832 26469147

16. Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens calculation formulas. Ophthalmology. 2018;125: 169–178. doi: 10.1016/j.ophtha.2017.08.027 28951074

17. Cooke DL, Cooke TL. Comparison of 9 intraocular lens power calculation formulas. J Cataract Refract Surg. 2016;42: 1157–1164. doi: 10.1016/j.jcrs.2016.06.029 27531292

18. Kane JX, Van Heerden A, Atik A, Petsoglou C. Intraocular lens power formula accuracy: Comparison of 7 formulas. J Cataract Refract Surg. 2016;42: 1490–1500. doi: 10.1016/j.jcrs.2016.07.021 27839605

19. Reitblat O, Assia EI, Kleinmann G, Levy A, Barrett GD, Abulafia A. Accuracy of predicted refraction with multifocal intraocular lenses using two biometry measurement devices and multiple intraocular lens power calculation formulas. Clin Exp Ophthalmol. 2015;43: 328–334. doi: 10.1111/ceo.12478 25491591

20. Hoffer KJ, Aramberri J, Haigis W, Olsen T, Savini G, Shammas HJ, et al. Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol. 2015;160: 403–405.e1. doi: 10.1016/j.ajo.2015.05.029 26117311

21. Wang L, Koch DD, Hill W, Abulafia A. Pursuing perfection in intraocular lens calculations: III. criteria for analyzing outcomes. J Cataract Refract Surg. 2017;43: 999–1002. doi: 10.1016/j.jcrs.2017.08.003 28917430

22. Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg. 1990;16: 333–340; erratum, 528. doi: 10.1016/s0886-3350(13)80705-5 2355321

23. Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 2000;238: 765–773. doi: 10.1007/s004170000188 11045345

24. User Group for Laser Interference Biometry (ULIB). Available:

25. Gale RP, Saldana M, Johnston RL, Zuberbuhler B, McKibbin M. Benchmark standards for refractive outcomes after NHS cataract surgery. Eye (Lond). 2009;23: 149–152.

26. Wang JK, Chang SW. Optical biometry intraocular lens power calculation using different formulas in patients with different axial lengths. Int J Ophthalmol. 2013;6: 150–154. doi: 10.3980/j.issn.2222-3959.2013.02.08 23638414

27. Hoffer KJ, Hoffmann PC, Savini G. Comparison of a new optical biometer using swept-source optical coherence tomography and a biometer using optical low-coherence reflectometry. J Cataract Refract Surg. 2016;42: 1165–1172. doi: 10.1016/j.jcrs.2016.07.013 27531293

28. Yang S, Whang WJ, Joo CK. Effect of anterior chamber depth on the choice of intraocular lens calculation formula. PLoS One. 2017;12: e0189868. doi: 10.1371/journal.pone.0189868 29253884

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden