Quantitative evaluation of choriocapillaris using optical coherence tomography and optical coherence tomography angiography in patients with central serous chorioretinopathy after half-dose photodynamic therapy

Autoři: Hyun Seung Yang aff001;  Tae Gu Kang aff002;  Hyun Park aff003;  Ji Su Heo aff001;  Jonghoon Park aff001;  Kyung Sub Lee aff001;  Sangkyung Choi aff002
Působiště autorů: Department of Ophthalmology, Seoul Shinsegae Eye Center, Eui Jung Bu, Gyeonggi-do, South Korea aff001;  Department of Ophthalmology, Veterans Health Service Medical Center, Seoul, South Korea aff002;  Department of Endocrinology, Seoul Chuk Hospital, Eui Jung Bu, Gyeonggi-do, South Korea aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227718



To quantify the structural and perfusion changes in choriocapillaris in chronic central serous chorioretinopathy after half-dose photodynamic therapy by using spectral-domain optical coherence tomography and optical coherence tomography angiography.


This retrospective interventional case series examined the eyes of patients with central serous chorioretinopathy. Patients underwent full ophthalmic examinations, including spectral-domain optical coherence tomography and angiography, prior to and 1, 3, and 6 months after the treatment. Clinical and tomographic features of the choriocapillaris and choroidal thickness and vascular changes were evaluated by assessing flow signal voids.


All 56 eyes of 56 patients showed complete resolution of subretinal fluid at 3 months after photodynamic therapy. The best-corrected visual acuity significantly improved at 6 months (p<0.001). The central subfield thickness, subfoveal choroidal thickness, subfoveal choroidal large vessel layer thickness, and mean total area of flow signal voids decreased significantly at 6 months (all p values < 0.001), but the subfoveal choriocapillaris layer thickness did not change significantly at 6 months (p≥0.16). Multivariate analysis revealed positive linear correlations of the central subfield thickness and subfoveal choroidal large vessel layer thickness with the mean total area of flow signal voids at 6 months (p<0.001). There was a negative linear correlation between the subfoveal choriocapillaris layer and the mean total area of flow signal voids at 6 months (p = 0.013).


Half-dose photodynamic therapy improved the anatomic and functional outcomes of central serous chorioretinopathy, induced subfoveal choroidal thickness thinning, and increased choriocapillaris perfusion. In addition, the recovery of the subfoveal choriocapillaris layer thickness and improved choriocapillaris perfusion were closely associated.

Klíčová slova:

Angiography – Eyes – Fluid flow – Imaging techniques – Multivariate analysis – Signal processing – Tomography – Visual acuity


1. Manayath GJ, Ranjan R, Shah VS, Karandikar SS, Saravanan VR, Narendran V. Central serous chorioretinopathy: Current update on pathophysiology and multimodal imaging. Oman J Ophthalmol. 2018;11: 103–112. doi: 10.4103/ojo.OJO_75_2017 29930442

2. Nicholson B, Noble J, Forooghian F, Meyerle C. Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol. 2013;58: 103–126. doi: 10.1016/j.survophthal.2012.07.004 23410821

3. Levy J, Marcus M, Belfair N, Klemperer I, Lifshitz T. Central serous chorioretinopathy in patients receiving systemic corticosteroid therapy. Can J Ophthalmol. 2005;40: 217–221. doi: 10.1016/s0008-4182(05)80040-7 16049541

4. Ji S, Wei Y, Chen J, Tang S. Clinical efficacy of anti-VEGF medications for central serous chorioretinopathy: a meta-analysis. Int J Clin Pharm. 2017;39: 514–521. doi: 10.1007/s11096-017-0460-4 28386700

5. Lim JW, Kang SW, Kim YT, Chung SE, Lee SW. Comparative study of patients with central serous chorioretinopathy undergoing focal laser photocoagulation or photodynamic therapy. Br J Ophthalmol. 2011;95: 514–517. doi: 10.1136/bjo.2010.182121 20644214

6. Lanzetta P, Furlan F, Morgante L, Veritti D, Bandello F. Nonvisible subthreshold micropulse diode laser (810 nm) treatment of central serous chorioretinopathy. A pilot study. Eur J Ophthalmol. 2008;18: 934–940. doi: 10.1177/112067210801800613 18988165

7. Koss MJ, Beger I, Koch FH. Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy. Eye (Lond). 2012;26: 307–314. doi: 10.1038/eye.2011.282 22079961

8. Maruko I, Koizumi H, Hasegawa T, Arakawa H, Iida T. Subthreshold 577 nm micropulse laser treatment for central serous chorioretinopathy. PLoS One. 2017;12: e0184112. doi: 10.1371/journal.pone.0184112 28850595

9. Petkovsek DS, Cherfan DG, Conti FF, Hom GL, Ehlers JP, Babiuch AS, et al. Eplerenone for the treatment of chronic central serous chorioretinopathy: 3-year clinical experience. Br J Ophthalmol. 2019. doi: 10.1136/bjophthalmol-2019-314047 31079056

10. Xu Y, Su Y, Li L, Qi H, Zheng H, Chen C. Effect of Photodynamic Therapy on Optical Coherence Tomography Angiography in Eyes with Chronic Central Serous Chorioretinopathy. Ophthalmologica. 2017;237: 167–172. doi: 10.1159/000456676 28171871

11. Min JY, Lv Y, Yu S, Gong YY. Findings of OCT-angiography compared to fluorescein and indocyanine green angiography in central serous chorioretinopathy. Lasers Surg Med. 2018;50: 987–993. doi: 10.1002/lsm.22952 29896889

12. Izumi T, Koizumi H, Maruko I, Takahashi Y, Sonoda S, Sakamoto T, et al. Structural analyses of choroid after half-dose verteporfin photodynamic therapy for central serous chorioretinopathy. Br J Ophthalmol. 2017;101: 433–437. doi: 10.1136/bjophthalmol-2016-308921 27388248

13. Demircan A, Yesilkaya C, Alkin Z. Early choriocapillaris changes after half-fluence photodynamic therapy in chronic central serous chorioretinopathy evaluated by optical coherence tomography angiography: Preliminary results. Photodiagnosis Photodyn Ther. 2018;21: 375–378. doi: 10.1016/j.pdpdt.2018.01.015 29409857

14. Nassisi M, Lavia C, Alovisi C, Musso L, Eandi CM. Short-Term Choriocapillaris Changes in Patients with Central Serous Chorioretinopathy after Half-Dose Photodynamic Therapy. Int J Mol Sci. 2017;18. doi: 10.3390/ijms18112468 29156649

15. Demirel S, Ozcan G, Yanik O, Batioglu F, Ozmert E. Vascular and structural alterations of the choroid evaluated by optical coherence tomography angiography and optical coherence tomography after half-fluence photodynamic therapy in chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2019;257: 905–912. doi: 10.1007/s00417-018-04226-6 30617579

16. Spaide RF. Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression. Am J Ophthalmol. 2016;170: 58–67. doi: 10.1016/j.ajo.2016.07.023 27496785

17. Yang HS, Woo JE, Kim MH, Kim DY, Yoon YH. Co-Evaluation of Peripapillary RNFL Thickness and Retinal Thickness in Patients with Diabetic Macular Edema: RNFL Misinterpretation and Its Adjustment. PLoS One. 2017;12: e0170341. doi: 10.1371/journal.pone.0170341 28114356

18. Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ, Laver N, et al. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology. 2013;120: 1901–1908. doi: 10.1016/j.ophtha.2013.01.066 23664466

19. Ma J, Meng N, Xu X, Zhou F, Qu Y. System review and meta-analysis on photodynamic therapy in central serous chorioretinopathy. Acta Ophthalmol. 2014;92: e594–601. doi: 10.1111/aos.12482 25042260

20. van Rijssen TJ, van Dijk EHC, Scholz P, Breukink MB, Blanco-Garavito R, Souied EH, et al. Focal and diffuse chronic central serous chorioretinopathy treated with half-dose photodynamic therapy or subthreshold micropulse laser. Am J Ophthalmol. 2019. doi: 10.1016/j.ajo.2019.03.025 30951686

21. van Dijk EHC, Fauser S, Breukink MB, Blanco-Garavito R, Groenewoud JMM, Keunen JEE, et al. Half-Dose Photodynamic Therapy versus High-Density Subthreshold Micropulse Laser Treatment in Patients with Chronic Central Serous Chorioretinopathy: The PLACE Trial. Ophthalmology. 2018;125: 1547–1555. doi: 10.1016/j.ophtha.2018.04.021 29776672

22. Spaide RF, Fujimoto JG, Waheed NK. Image Artifacts in Optical Coherence Tomography Angiography. Retina. 2015;35: 2163–2180. doi: 10.1097/IAE.0000000000000765 26428607

23. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64: 1–55. doi: 10.1016/j.preteyeres.2017.11.003 29229445

24. Camino A, Zhang M, Gao SS, Hwang TS, Sharma U, Wilson DJ, et al. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology. Biomed Opt Express. 2016;7: 3905–3915. doi: 10.1364/BOE.7.003905 27867702

25. Liu L, Jian G, Bao W, Hu C, Xu Y, Zhao B, et al. Analysis of Foveal Microvascular Abnormalities in Diabetic Retinopathy Using Optical Coherence Tomography Angiography with Projection Artifact Removal. J Ophthalmol. 2018;2018: 3926745. doi: 10.1155/2018/3926745 30319818

26. Zhu T, Ma J, Li J, Dai X, Ye P, Su Z, et al. Multifractal and lacunarity analyses of microvascular morphology in eyes with diabetic retinopathy: A projection artifact resolved optical coherence tomography angiography study. Microcirculation. 2019;26: e12519. doi: 10.1111/micc.12519 30480851

27. Zhang Q, Zhang A, Lee CS, Lee AY, Rezaei KA, Roisman L, et al. Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography. Ophthalmol Retina. 2017;1: 124–136. doi: 10.1016/j.oret.2016.08.005 28584883

28. Fayed AE, Fawzi AA. Projection resolved optical coherence tomography angiography to distinguish flow signal in retinal angiomatous proliferation from flow artifact. PLoS One. 2019;14: e0217109. doi: 10.1371/journal.pone.0217109 31091288

29. Maruko I, Spaide RF, Koizumi H, Sawaguchi S, Izumi T, Hasegawa T, et al. Choroidal Blood Flow Visualization in High Myopia Using a Projection Artifact Method in Optical Coherence Tomography Angiography. Retina. 2017;37: 460–465. doi: 10.1097/IAE.0000000000001324 27541926

30. Rochepeau C, Kodjikian L, Garcia MA, Coulon C, Burillon C, Denis P, et al. Optical Coherence Tomography Angiography Quantitative Assessment of Choriocapillaris Blood Flow in Central Serous Chorioretinopathy. Am J Ophthalmol. 2018;194: 26–34. doi: 10.1016/j.ajo.2018.07.004 30053475

31. Cennamo G, Cennamo M, Caputo G, Mirra F, Pafundi PC, de Crecchio G, et al. Optical Coherence Tomography Angiography to Assess Vascular Remodeling of the Choriocapillaris After Low-Fluence Photodynamic Therapy for Chronic Central Serous Chorioretinopathy. Photodiagnosis Photodyn Ther. 2019. doi: 10.1016/j.pdpdt.2019.05.041 31163282

32. Zhang Q, Zheng F, Motulsky EH, Gregori G, Chu Z, Chen CL, et al. A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography. Invest Ophthalmol Vis Sci. 2018;59: 203–211. doi: 10.1167/iovs.17-22953 29340648

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden