Astrocyte senescence promotes glutamate toxicity in cortical neurons

Autoři: Chandani Limbad aff001;  Tal Ronnen Oron aff001;  Fatouma Alimirah aff001;  Albert R. Davalos aff001;  Tara E. Tracy aff001;  Li Gan aff003;  Pierre-Yves Desprez aff001;  Judith Campisi aff001
Působiště autorů: Buck Institute for Research on Aging, Novato, California, United States of America aff001;  Comparative Biochemistry Graduate Program, University of California, Berkeley, California, United States of America aff002;  Gladstone Institute of Neurological Disease, San Francisco, California, United States of America aff003;  Department of Neurology, Weill Institute of Neuroscience, University of California, San Francisco, California, United States of America aff004;  California Pacific Medical Center, San Francisco, California, United States of America aff005;  Lawrence Berkeley National Laboratory, Berkeley, California, United States of America aff006
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


Neurodegeneration is a major age-related pathology. Cognitive decline is characteristic of patients with Alzheimer’s and related dementias and cancer patients after chemo- or radio-therapies. A recently emerged driver of these and other age-related pathologies is cellular senescence, a cell fate that entails a permanent cell cycle arrest and pro-inflammatory senescence-associated secretory phenotype (SASP). Although there is a link between inflammation and neurodegenerative diseases, there are many open questions regarding how cellular senescence affects neurodegenerative pathologies. Among the various cell types in the brain, astrocytes are the most abundant. Astrocytes have proliferative capacity and are essential for neuron survival. Here, we investigated the phenotype of primary human astrocytes made senescent by X-irradiation, and identified genes encoding glutamate and potassium transporters as specifically downregulated upon senescence. This down regulation led to neuronal cell death in co-culture assays. Unbiased RNA sequencing of transcripts expressed by non-senescent and senescent astrocytes confirmed that glutamate homeostasis pathway declines upon senescence. Our results suggest a key role for cellular senescence, particularly in astrocytes, in excitotoxicity, which may lead to neurodegeneration including Alzheimer’s disease and related dementias.

Klíčová slova:

Alzheimer's disease – Astrocytes – Gene expression – Glutamate – Neuronal death – Neurons – RNA sequencing – Senescence


1. Lecot P, Alimirah F, Desprez PY, Campisi J, Wiley C. Context-dependent effects of cellular senescence in cancer development. Br J Cancer. 2016;114(11):1180–4. Epub 2016/05/04. bjc2016115 [pii] doi: 10.1038/bjc.2016.115 27140310; PubMed Central PMCID: PMC4891501.

2. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011;192(4):547–56. Epub 2011/02/16. jcb.201009094 [pii] doi: 10.1083/jcb.201009094 21321098; PubMed Central PMCID: PMC3044123.

3. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105(13):1541–4. Epub 2002/04/03. doi: 10.1161/01.cir.0000013836.85741.17 11927518.

4. Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, Brenner D. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology. 2003;37(3):653–64. Epub 2003/02/26. doi: 10.1053/jhep.2003.50097 S027091390214208X [pii]. 12601363.

5. Minamino T, Yoshida T, Tateno K, Miyauchi H, Zou Y, Toko H, et al. Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation. 2003;108(18):2264–9. Epub 2003/10/15. doi: 10.1161/01.CIR.0000093274.82929.22 CIR.0000093274.82929.22 [pii]. 14557365.

6. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–46. Epub 2014/05/23. nature13193 [pii] doi: 10.1038/nature13193 24848057; PubMed Central PMCID: PMC4214092.

7. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016;23(2):303–14. Epub 2015/12/22. S1550-4131(15)00578-1 [pii] doi: 10.1016/j.cmet.2015.11.011 26686024; PubMed Central PMCID: PMC4749409.

8. Zhou F, Onizawa S, Nagai A, Aoshiba K. Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury. Respir Res. 2011;12:78. Epub 2011/06/15. 1465-9921-12-78 [pii] doi: 10.1186/1465-9921-12-78 21663649; PubMed Central PMCID: PMC3118351.

9. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98(21):12072–7. Epub 2001/10/11. doi: 10.1073/pnas.211053698 211053698 [pii]. 11593017; PubMed Central PMCID: PMC59769.

10. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018;562(7728):578–82. Epub 2018/09/21. doi: 10.1038/s41586-018-0543-y 30232451; PubMed Central PMCID: PMC6206507.

11. Bhat R, Crowe EP, Bitto A, Moh M, Katsetos CD, Garcia FU, et al. Astrocyte senescence as a component of Alzheimer's disease. PLoS One. 2012;7(9):e45069. Epub 2012/09/18. doi: 10.1371/journal.pone.0045069 PONE-D-12-08309 [pii]. 22984612; PubMed Central PMCID: PMC3440417.

12. Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, Andersen JK. Cellular senescence and the aging brain. Exp Gerontol. 2015;68:3–7. Epub 2014/10/05. S0531-5565(14)00275-7 [pii] doi: 10.1016/j.exger.2014.09.018 25281806; PubMed Central PMCID: PMC4382436.

13. Jakel S, Dimou L. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. Front Cell Neurosci. 2017;11:24. Epub 2017/03/01. doi: 10.3389/fncel.2017.00024 28243193; PubMed Central PMCID: PMC5303749.

14. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36(3):174–84. Epub 2013/01/10. S0166-2236(12)00205-6 [pii] doi: 10.1016/j.tins.2012.11.008 23298414.

15. Bitto A, Sell C, Crowe E, Lorenzini A, Malaguti M, Hrelia S, et al. Stress-induced senescence in human and rodent astrocytes. Exp Cell Res. 2010;316(17):2961–8. Epub 2010/07/14. S0014-4827(10)00342-3 [pii] doi: 10.1016/j.yexcr.2010.06.021 20620137.

16. Maragakis NJ, Rothstein JD. Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol. 2006;2(12):679–89. Epub 2006/11/23. ncpneuro0355 [pii] doi: 10.1038/ncpneuro0355 17117171.

17. Mombach JC, Vendrusculo B, Bugs CA. A Model for p38MAPK-Induced Astrocyte Senescence. PLoS One. 2015;10(5):e0125217. Epub 2015/05/09. doi: 10.1371/journal.pone.0125217 PONE-D-14-53952 [pii]. 25954815; PubMed Central PMCID: PMC4425668.

18. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–7. doi: 10.1073/pnas.92.20.9363 7568133

19. Freund A, Laberge RM, Demaria M, Campisi J. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell. 2012;23(11):2066–75. Epub 2012/04/13. mbc.E11-10-0884 [pii] doi: 10.1091/mbc.E11-10-0884 22496421; PubMed Central PMCID: PMC3364172.

20. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68. Epub 2008/12/05. 08-PLBI-RA-2566 [pii] doi: 10.1371/journal.pbio.0060301 19053174; PubMed Central PMCID: PMC2592359.

21. Davalos AR, Kawahara M, Malhotra GK, Schaum N, Huang J, Ved U, et al. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol. 2013;201(4):613–29. Epub 2013/05/08. jcb.201206006 [pii] doi: 10.1083/jcb.201206006 23649808; PubMed Central PMCID: PMC3653366.

22. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. Epub 2010/01/19. doi: 10.1146/annurev-pathol-121808-102144 20078217; PubMed Central PMCID: PMC4166495.

23. Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics. 2010;7(4):338–53. Epub 2010/10/01. S1933-7213(10)00111-X [pii] doi: 10.1016/j.nurt.2010.07.006 20880499; PubMed Central PMCID: PMC2982258.

24. Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K, Reichenbach A, et al. Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia. 2007;55(3):274–81. Epub 2006/11/09. doi: 10.1002/glia.20455 17091490.

25. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. Epub 2014/04/04. btu170 [pii] doi: 10.1093/bioinformatics/btu170 24695404; PubMed Central PMCID: PMC4103590.

26. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. Epub 2013/04/27. gb-2013-14-4-r36 [pii] doi: 10.1186/gb-2013-14-4-r36 23618408; PubMed Central PMCID: PMC4053844.

27. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78. Epub 2012/03/03. nprot.2012.016 [pii] doi: 10.1038/nprot.2012.016 22383036; PubMed Central PMCID: PMC3334321.

28. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. Epub 2009/01/10. nprot.2008.211 [pii] doi: 10.1038/nprot.2008.211 19131956.

29. Draberova E, Del Valle L, Gordon J, Markova V, Smejkalova B, Bertrand L, et al. Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. J Neuropathol Exp Neurol. 2008;67(4):341–54. Epub 2008/04/02. doi: 10.1097/NEN.0b013e31816a686d 18379434.

30. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nature Rev Molec Cell Biol. 2007;8:729–40.

31. Jeon HY, Kim JK, Ham SW, Oh SY, Kim J, Park JB, et al. Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype. Tumour Biol. 2016;37(5):5857–67. Epub 2015/11/21. doi: 10.1007/s13277-015-4439-2 [pii]. 26586398.

32. Riemenschneider MJ, Reifenberger G. Astrocytic tumors. Recent Results Cancer Res. 2009;171:3–24. Epub 2009/03/27. doi: 10.1007/978-3-540-31206-2_1 19322535.

33. Morales I, Guzman-Martinez L, Cerda-Troncoso C, Farias GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014;8:112. Epub 2014/05/06. doi: 10.3389/fncel.2014.00112 24795567; PubMed Central PMCID: PMC4001039.

34. Tan FC, Hutchison ER, Eitan E, Mattson MP. Are there roles for brain cell senescence in aging and neurodegenerative disorders? Biogerontology. 2014;15(6):643–60. Epub 2014/10/12. doi: 10.1007/s10522-014-9532-1 25305051; PubMed Central PMCID: PMC4264619.

35. Zou Y, Zhang N, Ellerby LM, Davalos AR, Zeng X, Campisi J, et al. Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation. Biochem Biophys Res Commun. 2012;426(1):100–5. Epub 2012/08/25. S0006-291X(12)01553-7 [pii] doi: 10.1016/j.bbrc.2012.08.043 22917535; PubMed Central PMCID: PMC3498829.

36. Chinta SJ, Woods G, Demaria M, Rane A, Zou Y, McQuade A, et al. Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease. Cell Rep. 2018;22(4):930–40. Epub 2018/02/02. S2211-1247(17)31929-0 [pii] doi: 10.1016/j.celrep.2017.12.092 29386135; PubMed Central PMCID: PMC5806534.

37. McGeer EG, McGeer PL. The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol. 1998;33(5):371–8. Epub 1998/10/08. S0531-5565(98)00013-8 [pii]. doi: 10.1016/s0531-5565(98)00013-8 9762518.

38. Ransom B, Behar T, Nedergaard M. New roles for astrocytes (stars at last). Trends Neurosci. 2003;26(10):520–2. Epub 2003/10/03. S0166-2236(03)00259-5 [pii] doi: 10.1016/j.tins.2003.08.006 14522143.

39. Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci. 2011;34(1):3–11. Epub 2011/06/09. doi: 10.1111/j.1460-9568.2011.07738.x 21649759.

40. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35. Epub 2009/12/17. doi: 10.1007/s00401-009-0619-8 20012068; PubMed Central PMCID: PMC2799634.

41. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 2005;6(8):626–40. Epub 2005/07/19. doi: 10.1038/nrn1722 [pii] 10.1038/nrn1722. 16025096.

42. Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000;32(1):1–14. Epub 2000/09/07. doi: 10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0CO;2-W [pii]. 10975906.

43. Caudle WM, Zhang J. Glutamate, excitotoxicity, and programmed cell death in Parkinson disease. Exp Neurol. 2009;220(2):230–3. Epub 2009/10/10. S0014-4886(09)00414-2 [pii] doi: 10.1016/j.expneurol.2009.09.027 19815009.

44. Seifert G, Schilling K, Steinhauser C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci. 2006;7(3):194–206. Epub 2006/02/24. nrn1870 [pii] doi: 10.1038/nrn1870 16495941.

45. Revett TJ, Baker GB, Jhamandas J, Kar S. Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci. 2013;38(1):6–23. Epub 2012/08/17. [pii] doi: 10.1503/jpn.110190 22894822; PubMed Central PMCID: PMC3529221.

46. Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int. 2004;45(5):583–95. Epub 2004/07/06. doi: 10.1016/j.neuint.2004.03.007 S0197018604000555 [pii]. 15234100.

47. Kobayashi E, Nakano M, Kubota K, Himuro N, Mizoguchi S, Chikenji T, et al. Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain. Sci Rep. 2018;8(1):1712. Epub 2018/01/28. doi: 10.1038/s41598-018-19442-7 29374250; PubMed Central PMCID: PMC5786045.

48. Zumkehr J, Rodriguez-Ortiz CJ, Cheng D, Kieu Z, Wai T, Hawkins C, et al. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease. Neurobiol Aging. 2015;36(7):2260–71. Epub 2015/05/13. doi: 10.1016/j.neurobiolaging.2015.04.005 25964214.

49. Kulijewicz-Nawrot M, Sykova E, Chvatal A, Verkhratsky A, Rodriguez JJ. Astrocytes and glutamate homoeostasis in Alzheimer's disease: a decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex. ASN Neuro. 2013;5(4):273–82. Epub 2013/09/26. doi: 10.1042/AN20130017 24059854; PubMed Central PMCID: PMC3791522.

50. Pereira AC, Gray JD, Kogan JF, Davidson RL, Rubin TG, Okamoto M, et al. Age and Alzheimer's disease gene expression profiles reversed by the glutamate modulator riluzole. Mol Psychiatry. 2017;22(2):296–305. Epub 2016/03/30. doi: 10.1038/mp.2016.33 27021815; PubMed Central PMCID: PMC5042881.

51. Nagy JI, Li W, Hertzberg EL, Marotta CA. Elevated connexin43 immunoreactivity at sites of amyloid plaques in Alzheimer's disease. Brain Res. 1996;717(1–2):173–8. Epub 1996/04/22. 0006-8993(95)01526-4 [pii]. doi: 10.1016/0006-8993(95)01526-4 8738268.

52. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90(5):1977–81. Epub 1993/03/01. doi: 10.1073/pnas.90.5.1977 8446617; PubMed Central PMCID: PMC46003.

53. Carter DB. The interaction of amyloid-beta with ApoE. Subcell Biochem. 2005;38:255–72. Epub 2005/02/16. doi: 10.1007/0-387-23226-5_13 15709483.

54. Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006;1762(11–12):1068–82. Epub 2006/06/30. S0925-4439(06)00082-2 [pii] doi: 10.1016/j.bbadis.2006.05.002 16806844.

55. Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther. 1999;81(3):163–221. Epub 1999/05/20. S0163-7258(98)00042-4 [pii]. doi: 10.1016/s0163-7258(98)00042-4 10334661.

56. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat Neurosci. 2014;17(5):694–703. Epub 2014/04/02. nn.3691 [pii] doi: 10.1038/nn.3691 24686787; PubMed Central PMCID: PMC4064471.

57. Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB. Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain. 2002;125(Pt 8):1908–22. Epub 2002/07/24. doi: 10.1093/brain/awf180 12135980.

58. Estrada Sanchez AM, Mejia-Toiber J, Massieu L. Excitotoxic neuronal death and the pathogenesis of Huntington's disease. Arch Med Res. 2008;39(3):265–76. Epub 2008/02/19. S0188-4409(07)00412-2 [pii] doi: 10.1016/j.arcmed.2007.11.011 18279698.

59. Crowe EP, Tuzer F, Gregory BD, Donahue G, Gosai SJ, Cohen J, et al. Changes in the Transcriptome of Human Astrocytes Accompanying Oxidative Stress-Induced Senescence. Front Aging Neurosci. 2016;8:208. Epub 2016/09/16. doi: 10.3389/fnagi.2016.00208 27630559; PubMed Central PMCID: PMC5005348.

60. Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, et al. Nursing home placement in the Donepezil and Memantine in Moderate to Severe Alzheimer's Disease (DOMINO-AD) trial: secondary and post-hoc analyses. Lancet Neurol. 2015;14(12):1171–81. Epub 2015/10/31. S1474-4422(15)00258-6 [pii] doi: 10.1016/S1474-4422(15)00258-6 26515660.

61. Zoccolella S, Beghi E, Palagano G, Fraddosio A, Guerra V, Samarelli V, et al. Riluzole and amyotrophic lateral sclerosis survival: a population-based study in southern Italy. Eur J Neurol. 2007;14(3):262–8. Epub 2007/03/16. ENE1575 [pii] doi: 10.1111/j.1468-1331.2006.01575.x 17355545.

62. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet. 1996;347(9013):1425–31. Epub 1996/05/25. S0140-6736(96)91680-3 [pii]. doi: 10.1016/s0140-6736(96)91680-3 8676624.

63. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83. Epub 2015/12/15. nm.4010 [pii] doi: 10.1038/nm.4010 26657143; PubMed Central PMCID: PMC4762215.

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden