Targeted transcriptomic study of the implication of central metabolic pathways in mannosylerythritol lipids biosynthesis in Pseudozyma antarctica T-34

Autoři: Keisuke Wada aff001;  Hideaki Koike aff002;  Tatsuya Fujii aff001;  Tomotake Morita aff003
Působiště autorů: Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan aff001;  Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan aff002;  Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227295


Pseudozyma antarctica is a nonpathogenic phyllosphere yeast known as an excellent producer of industrial lipases and mannosylerythritol lipids (MELs), which are multi-functional glycolipids. The fungus produces a much higher amount of MELs from vegetable oil than from glucose, whereas its close relative, Ustilago maydis UM521, produces a lower amount of MELs from vegetable oil. In the present study, we used previous gene expression profiles measured by DNA microarray analyses after culturing on two carbon sources, glucose and soybean oil, to further characterize MEL biosynthesis in P. antarctica T-34. A total of 264 genes were found with induction ratios and expression intensities under oily conditions with similar tendencies to those of MEL cluster genes. Of these, 93 were categorized as metabolic genes using the Eukaryotic Orthologous Groups classification. Within this metabolic category, amino acids, carbohydrates, inorganic ions, and secondary metabolite metabolism, as well as energy production and conversion, but not lipid metabolism, were enriched. Furthermore, genes involved in central metabolic pathways, such as glycolysis and the tricarboxylic acid cycle, were highly induced in P. antarctica T-34 under oily conditions, whereas they were suppressed in U. maydis UM521. These results suggest that the central metabolism of P. antarctica T-34 under oily conditions contributes to its excellent oil utilization and extracellular glycolipid production.

Klíčová slova:

Biosynthesis – Citric acid cycle – Gene expression – Glucose – Metabolic pathways – Soybean – Ustilago maydis – Vegetable oils


1. Boekhout T, Fell JW. Pseudozyma Bandoni emend. Boekhout and a comparison with the yeast state of Ustilago maydis (de Candolle) Corda. In: Kurtzman CP, Fell JW, editors. The yeasts: a taxonomic study. 4th ed. Amsterdam: Elsevier Science Publishers; 1998. p. 790–797.

2. Boekhout T. Pseudozyma Bandoni emend. Boekhout, a genus for yeast-like anamorphs of Ustilaginales. J Gen Appl Microbiol. 1995;41:359–366.

3. Kitamoto HK, Shinozaki Y, Cao XH, Morita T, Konishi M, Tago K, et al. Phyllosphere yeasts rapidly break down biodegradable plastics. AMB Express. 2011;1:44. doi: 10.1186/2191-0855-1-44 22126328

4. Kitamoto D, Haneishi K, Nakahara T, Tabuchi T. Production of mannosylerythritol lipids by Candida antarctica from vegetable oils. Agric Biol Chem. 1990;54(1):37–40.

5. Kitamoto D, Isoda H, Nakahara T. Functional and potential applications of glycolipid biosurfactants. J Biosci Bioeng. 2002;94(3):187–201. doi: 10.1263/jbb.94.187 16233292

6. Kitamoto D, Morita T, Fukuoka T, Konishi M, Imura T. Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci. 2009;14(5):315–328.

7. Imura T, Hikosaka Y, Worakitkanchanakul W, Sakai H, Abe M, Konishi M, et al. Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir. 2007;23(4):1659–1663. doi: 10.1021/la0620814 17279642

8. Ito S, Imura T, Fukuoka T, Morita T, Sakai H, Abe M, et al. Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance. Colloids Surf B Biointerfaces. 2007;58(1):165–171.

9. Morita T, Fukuoka T, Imura T, Kitamoto D. Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnol Appl Biochem. 2009;53(Pt1):39–49.

10. Morita T, Fukuoka T, Imura T, Kitamoto D. Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol. 2013a;97(11):4691–4700. doi: 10.1007/s00253-013-4858-1 23584242

11. Kitamoto D, Ikegami T, Suzuki T, Sasaki A, Takeyama Y, Idemoto Y, et al. Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett. 2001;23(20):1709–1714.

12. Rau U, Nguyen LA, Roeper H, Koch H, Lang S. Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol. 2005;68(5):607–613. doi: 10.1007/s00253-005-1906-5 15729556

13. Lorenz S, Guenther M, Grumaz C, Rupp S, Zibek S, Sohn K. Genome sequence of the basidiomycetous fungus Pseudozyma aphidis DSM70725, an efficient producer of biosurfactant mannosylerythritol lipids. Genome Announc. 2014;2(1). pii: e00053–14. doi: 10.1128/genomeA.00053-14 24526638

14. Spoeckner S, Wray V, Nimtz M, Lang S. Glycolipids of the smut fungus Ustilago maydis from cultivation on renewable resources. Appl Microbiol Biotechnol. 1999;51:33–39.

15. Morita T, Koike H, Koyama Y, Hagiwara H, Ito E, Fukuoka T, et al. Genome sequence of the basidiomycetous yeast Pseudozyma antarctica T-34, a producer of the glycolipid biosurfactants mannosylerythritol lipids. Genome Announc. 2013b;1(2). pii: e0006413. doi: 10.1128/genomeA.00064-13 23558529

16. Morita T, Koike H, Hagiwara H, Ito E, Machida M, Sato S, et al. 2014. Genome and transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids. PLoS One. 2014;9(2). pii: e86490. eCollection 2014. doi: 10.1371/journal.pone.0086490 24586250

17. Guay C, Joly E, Pepin E, Barbeau A, Hentsch L, Pineda M, et al. A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic ß-cells. PLoS One. 2013;8(10), pii: e77097. eCollection 2013. doi: 10.1371/journal.pone.0077097 24130841

18. R Development Core Team. R: A Language and Environment for Statistical. Computing, R Foundation for Statistical Computing, 2009, Vienna, Austria.

19. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. 2004;5(10):R80.

20. Yang YH, Paquet AC. Preprocessing two-color spotted arrays. In: Gentleman RC, Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. New York: Springer Science+Business Media Inc.; 2005. p. 49–90.

21. Carr DB, Littlefield RJ, Nicholson WL, Littlefield JS. Scatterplot Matrix Techniques for Large N. J Am Stat Assoc. 1987;82(398):424–436.

22. Saika A, Koike H, Yamamoto S, Kishimoto T, Morita T. Enhanced production of a distereomer type of mannosylerythritol lipid-B by the basidiomycetous yeast Pseudozyma tsukubaensis expressing lipase genes from Pseudozyma antarctica. Appl Microbiol Biotechnol. 2017;101(23–24):8345–8352 doi: 10.1007/s00253-017-8589-6 29075829

23. Kitamoto D, Yanagishita H, Haraya K, Kitamoto H. Contribution of a chain-shortening pathway to the biosynthesis of the fatty acids of mannosylerythritol lipid (biosurfactant) in the yeast Candida antarctica: Effect of β-oxidation inhibitors on biosurfactant synthesis. Biotechnol Lett. 1998;20(9):813–818.

24. Maloy SR, Bohlander M, Nunn WD. Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. J Bacteriol. 1980;143(2):720–725 7009561

25. Renilla S, Bernal V, Fuhrer T, Castaño-Cerezo S, Pastor JM, Iborra JL, et al. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures. Appl Microbiol Biotechnol. 2012;93(5):2109–2024 doi: 10.1007/s00253-011-3536-4 21881893

26. Liu N, Qiao K, Stephanopoulos G. 13C Metabolic Flux Analysis of acetate conversion to lipids by Yarrowia lipolytica. Metab Eng. 2016;38:86–97. doi: 10.1016/j.ymben.2016.06.006 27387605

27. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D. Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Appl Microbiol Biotechnol. 2007;74(2):307–315 doi: 10.1007/s00253-006-0672-3 17103161

28. Morita T, Takashima M, Fukuoka T, Konishi M, Imura T, Kitamoto D. Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B. Appl Mircobiol Biotechnol. 2010;88(3):679–688

29. Ueda H, Mitsuhara I, Tabata J, Kugimiya S, Watanabe T, Suzuki K, et al. Extracellular esterases of phylloplane yeast Pseudozyma antarctica induce defect on cuticle layer structure and water-holding ability of plant leaves. Appl Microbiol Biotechnol. 2015;99(15):6405–6415 doi: 10.1007/s00253-015-6523-3 25783629

30. Liu Y, Koh CM, Ji L. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresource Technol. 2011;102(4):3927–3933.

Článek vyšel v časopise


2020 Číslo 1