Recombinant human soluble thrombomodulin is associated with attenuation of sepsis-induced renal impairment by inhibition of extracellular histone release

Autoři: Masayuki Akatsuka aff001;  Yoshiki Masuda aff002;  Hiroomi Tatsumi aff002;  Michiaki Yamakage aff001
Působiště autorů: Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan aff001;  Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0228093


Multiple organ dysfunction induced by sepsis often involves kidney injury. Extracellular histones released in response to damage-associated molecular patterns are known to facilitate sepsis-induced organ dysfunction. Recombinant human soluble thrombomodulin (rhTM) and its lectin-like domain (D1) exert anti-inflammatory effects and neutralize damage-associated molecular patterns. However, the effects of rhTM and D1 on extracellular histone H3 levels and kidney injury remain poorly understood. Our purpose was to investigate the association between extracellular histone H3 levels and kidney injury, and to clarify the effects of rhTM and D1 on extracellular histone H3 levels, kidney injury, and survival in sepsis-induced rats. Rats in whom sepsis was induced via cecal ligation and puncture were used in this study. Histone H3 levels, histopathology of the kidneys, and the survival rate of rats at 24 h after cecal ligation and puncture were investigated. Histone H3 levels increased over time following cecal ligation and puncture. Histopathological analyses indicated that the distribution of degeneration foci among tubular epithelial cells of the kidney and levels of histone H3 increased simultaneously. Administration of rhTM and D1 significantly reduced histone H3 levels compared with that in the vehicle-treated group and improved kidney injury. The survival rates of rats in rhTM- and D1-treated groups were significantly higher than that in the vehicle-treated group. The results of this study indicated that rhTM and its D1 similarly reduce elevated histone H3 levels, thereby reducing acute kidney injury. Our findings also proposed that rhTM and D1 show potential as new treatment strategies for sepsis combined with acute kidney injury.

Klíčová slova:

Creatinine – Cytokines – Histology – Histones – Inflammation – Kidneys – Lectins – Sepsis


1. Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol. 2007;2(3):431–9. Epub 2007/08/19. doi: 10.2215/CJN.03681106 17699448.

2. Bouchard J, Acharya A, Cerda J, Maccariello ER, Madarasu RC, Tolwani AJ, et al. A Prospective International Multicenter Study of AKI in the Intensive Care Unit. Clin J Am Soc Nephrol. 2015;10(8):1324–31. doi: 10.2215/CJN.04360514 26195505.

3. Yegenaga I, Hoste E, Van Biesen W, Vanholder R, Benoit D, Kantarci G, et al. Clinical characteristics of patients developing ARF due to sepsis/systemic inflammatory response syndrome: results of a prospective study. Am J Kidney Dis. 2004;43(5):817–24. doi: 10.1053/j.ajkd.2003.12.045 15112172.

4. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nature medicine. 2009;15(11):1318–21. doi: 10.1038/nm.2053 19855397.

5. Fuchs TA, Bhandari AA, Wagner DD. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118(13):3708–14. doi: 10.1182/blood-2011-01-332676 21700775.

6. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr., et al. Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(36):15880–5. doi: 10.1073/pnas.1005743107 20798043.

7. Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101(7):2652–60. doi: 10.1182/blood-2002-05-1300 12456506.

8. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5. doi: 10.1038/nature00858 12110890.

9. Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. The Journal of clinical investigation. 2001;108(7):949–55. doi: 10.1172/JCI14002 11581294.

10. Silk E, Zhao H, Weng H, Ma D. The role of extracellular histone in organ injury. Cell death & disease. 2017;8(5):e2812. doi: 10.1038/cddis.2017.52 28542146.

11. Sunden-Cullberg J, Norrby-Teglund A, Treutiger CJ. The role of high mobility group box-1 protein in severe sepsis. Current opinion in infectious diseases. 2006;19(3):231–6. doi: 10.1097/01.qco.0000224816.96986.67 16645483.

12. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science (New York, NY). 1999;285(5425):248–51. doi: 10.1126/science.285.5425.248 10398600.

13. Esmon CT. The interactions between inflammation and coagulation. British journal of haematology. 2005;131(4):417–30. doi: 10.1111/j.1365-2141.2005.05753.x 16281932.

14. Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M, et al. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. The EMBO journal. 1987;6(7):1891–7. doi: 10.1002/j.1460-2075.1987.tb02448.x 2820710.

15. Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, et al. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. The Journal of clinical investigation. 2005;115(5):1267–74. doi: 10.1172/JCI22782 15841214.

16. Ito T, Maruyama I. Thrombomodulin: protectorate God of the vasculature in thrombosis and inflammation. J Thromb Haemost. 2011;9 Suppl 1:168–73. doi: 10.1111/j.1538-7836.2011.04319.x 21781252.

17. Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. Ilar j. 2002;43(4):244–58. doi: 10.1093/ilar.43.4.244 12391400.

18. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science (New York, NY). 2004;303(5663):1532–5. doi: 10.1126/science.1092385 15001782.

19. Allam R, Scherbaum CR, Darisipudi MN, Mulay SR, Hagele H, Lichtnekert J, et al. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol. 2012;23(8):1375–88. doi: 10.1681/ASN.2011111077 22677551.

20. Kawai C, Kotani H, Miyao M, Ishida T, Jemail L, Abiru H, et al. Circulating Extracellular Histones Are Clinically Relevant Mediators of Multiple Organ Injury. Am J Pathol. 2016;186(4):829–43. doi: 10.1016/j.ajpath.2015.11.025 26878212.

21. Ito T, Nakahara M, Masuda Y, Ono S, Yamada S, Ishikura H, et al. Circulating histone H3 levels are increased in septic mice in a neutrophil-dependent manner: preclinical evaluation of a novel sandwich ELISA for histone H3. J Intensive Care. 2018;6:79. doi: 10.1186/s40560-018-0348-y 30505450.

22. Xu J, Lupu F, Esmon CT. Inflammation, innate immunity and blood coagulation. Hamostaseologie. 2010;30(1):5–6, 8–9. 20162248.

23. Nagato M, Okamoto K, Abe Y, Higure A, Yamaguchi K. Recombinant human soluble thrombomodulin decreases the plasma high-mobility group box-1 protein levels, whereas improving the acute liver injury and survival rates in experimental endotoxemia. Crit Care Med. 2009;37(7):2181–6. doi: 10.1097/CCM.0b013e3181a55184 19487933.

24. Nakahara M, Ito T, Kawahara K, Yamamoto M, Nagasato T, Shrestha B, et al. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism. PLoS One. 2013;8(9):e75961. doi: 10.1371/journal.pone.0075961 24098750.

25. Osumi W, Jin D, Imai Y, Tashiro K, Li ZL, Otsuki Y, et al. Recombinant human soluble thrombomodulin improved lipopolysaccharide/d-galactosamine-induced acute liver failure in mice. J Pharmacol Sci. 2015;129(4):233–9. doi: 10.1016/j.jphs.2015.11.007 26712705.

26. Loghmani H, Conway EM. Exploring traditional and nontraditional roles for thrombomodulin. Blood. 2018;132(2):148–58. doi: 10.1182/blood-2017-12-768994 29866818.

27. Sharfuddin AA, Sandoval RM, Berg DT, McDougal GE, Campos SB, Phillips CL, et al. Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol. 2009;20(3):524–34. doi: 10.1681/ASN.2008060593 19176699.

28. Molitoris BA, Sutton TA. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int. 2004;66(2):496–9. doi: 10.1111/j.1523-1755.2004.761_5.x 15253696.

29. Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62(5):1539–49. doi: 10.1046/j.1523-1755.2002.00631.x 12371954.

30. Rosenberg RD, Rosenberg JS. Natural anticoagulant mechanisms. The Journal of clinical investigation. 1984;74(1):1–6. doi: 10.1172/JCI111389 6330171.

Článek vyšel v časopise


2020 Číslo 1